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Successive approximation and variational iteration
method boundary value problem with retarded

argument

Arzu Aykut, Cebeli İnan, Erdal Eker

Abstract

In this paper, conclusions obtained from this two method are compared
with by using successive approximations and variational iteration method for
approximate solution of a second-order linear differential equation with retarded
argument.

2010 Mathematics Subject Classification: 45B05-45D05,41A35,65K15.
Key words and phrases: Fredholm-Volterra integral equations, Successive

approximation method, Variational iteration method.

1 Introduction

Integral equations are equations in which the unknown function appears inside a
definite integral. They are closely related to differential equations. Initial value
problems and boundary value problems for ordinary and partial differential equations
can be written as integral equations and some integral equations can be written as
initial or boundary value problems for differential equations. Problems that can be
cast in both forms are generally more familiar as differential equations, owing to the
larger collection of analytical procedures for solving differential equations.

Many applications are best modeled with integral equations, but most of these
problems require a lengthy derivation. A relatively simple example is the model for
population dynamics, with birth and death rates that depend on age.

Integral equations are also important in theory and numerical analysis of differ-
ential equations [13].

One of methods used in obtaining analytical solution for the boundary value
problems is the integral equation method [17]-[15]. Thanks to this method, it is
acquired an integral equation that is equivalent to the boundary value problem (1)
and the solution of the integral equation is known as equivalent to the solution
of the boundary value problem. As equivalent integral equation is used usually a
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Fredholm equation in the classical theory, we obtain a Fredholm-Volterra integral
equation different from classical theory for the problem (1) and the approximation
solutions is obtained by using this equation by means of Green function.

The Fredholm operator included in the equivalent integral equation is an operator
with a degenerated kernel. We applied the ordinary successive approximation and
variational iteration method for problem (1).

In this study, these methods can be applied for the boundary value problems
with retarded argument. The problem (1) has been studied for τ (t) = 0 in [14],
τ (t) = constant in [11]. Furthermore, problem (1) has been studied with varied
boundary conditions [3]. We investigated the solution of boundary value problem
(1) for arbitrary continuous function τ (t).

In addition, in this paper, we used also variational iteration method (VIM) to
find the approximate solution of boundary value problems with retarded argument.
The variational iteration method is a new method for solving linear and nonlinear
problems and was introduced by a Chinese mathematician, He J. H.([7]-[8]-[9]). He
modified the general Lagrange multiplier method [10] and constructed an iterative
sequence of functions which converges to the exact solution. In most linear problem
the Lagrange multiplier, the approximate solution turns into the exact solution and
is available with just iterations [18].

2 Statement of the Problem

In this section, we will give a boundary value problem with retarded argument as
follows:

xq (t) + a (t)x (t− τ (t)) = f (t) , (0 < t < T )(1)

x (t) = φ (t) , (λ0 ≤ t ≤ 0) , x (T ) = xT

where a (t) ≥ 0, f (t) ≥ 0, τ (t) ≥ 0 ,(0 ≤ t ≤ T ) and φ (t) , (λ0 ≤ t ≤ 0) are known
previously continuous functions.

On the one hand we find an equivalent integral equation in order to apply for suc-
cessive approximation method, on the other hand it is not necessary to an equivalent
integral equation for variational iteration method.

2.1 An equivalent integral equation

In the problem (1), when we take as λ (t) = t−τ (t) then t ∈ [0, T ] is a point located at
the left side of T such that conditions λ (t0) = 0 and λ (t) ≤ 0, 0 ≤ t ≤ t0 are satisfied,
where λ0 = min0≤t≤t0 λ (t). We suppose that λ (t) is a nondecreasing function in the
interval [t0, T ] and the equation λ (t) = σ has a differentiable continuous solution
t = γ (σ) for arbitrary σ ∈ [0, λ (t)]. It can be seen that if x (t) is a solution of the
boundary value problem (1) then x (t) is also the solution of the equation

(2) x (t) = h∗ (t)+
t

T

T∫
0

(T − s) a (s)x (s− τ (s)) ds−
t∫

0

(t− s) a (s)x (s− τ (s)) ds
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Here,

h∗ (t) = φ (0) + (xT − φ (0))
t

T
− t

T

T∫
0

(T − s) f (s) ds−
t∫

0

(t− s) f (s) ds

Let σ = s− τ (s). Therefore equation (2) can be written as follows:

x (t) = H (t) +
t

T

λ(T )∫
0

[T − γ (σ)] a (γ (σ))x (σ) γ p (σ) dσ(3)

−
λ(t)∫
0

[t− γ (σ)] a (γ (σ))x (σ) γ p (σ) dσ

where

H (t) = h∗ (t) +
t

T

0∫
λ0

[T − γ (σ)] a (γ (σ))x (σ) γ p (σ) dσ(4)

−
0∫

λ0

[t− γ (σ)] a (γ (σ))x (σ) γ p (σ) dσ.

Let

K (σ) = [T − γ (σ)] a (γ (σ)) γ p (σ) ,

K (t, σ) = − [t− γ (σ)] a (γ (σ)) γ p (σ) .

Therefore we write

(5) x (t) = H (t) +
t

T

λ(T )∫
0

K (σ)x (σ) dσ +

λ(t)∫
0

K (t, σ)x (σ) dσ

or

(6) x (t) = H (t) +
t

T
Fλx+ Vλx

where,

Fλx ≡
λ(T )∫
0

K (σ)x (σ) dσ

is the Fredholm operator,

Vλx ≡
λ(t)∫
0

K (t, σ)x (σ) dσ

is the Volterra operator. Equation (6) is called Fredholm-Volterra integral equation
and equivalent to the problem (1).
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2.2 The ordinary successive approximation method

In this section we know the existence and the uniqueness of solution for the problem
(1). However, we will also know that the solution of the problem (1) converges to
the solution of the ordinary successive approximations,

(7) xn (t) = h (t) +

λ(T )∫
0

G (t, γ (σ)) a (γ (σ)) γ p (σ)xn−1 (σ) dσ, n = (1, 2, ..)

for the arbitrary continuous function x0 (t) , (0 ≤ t ≤ T ) where

G (t, s) =

{
(T−t)s
T , 0 ≤ s ≤ t

(T−s)t
T , t ≤ s ≤ T

is Green function. The function G (t, s) , (0 ≤ s ≤ t) is positive, symmetric and
continuous. It is hold following conditions for this function.

|G (t, s)| ≤ T

4
,

T∫
0

|G (τ, s)| dτ ≤ T 2

8

We use the Fredholm integral equation in order to show the existence and the unique-
ness of solution for the problem (1).

Lemma 1 We assume that E is a Banach space and A : E → E a contraction
mapping. Then the equation

(8) x = A (x)

has a unique solution x∗ and the ordinary approximations {xn} which are defined by

(9) xn = A (xn−1) , n = (1, 2, ..)

and these approximations converge to x∗ where the first approximation is x0 ∈ E.

Theorem 1 Suppose that a = a (t) is a continuous function in the interval (0 ≤ t ≤ T )
and

l =
T 2

8
∥a∥ < 1

Therefore problem (1) has a unique solution and the approximation (7) converge to
the solution of the problem (1) and the speed of the convergence is determined by

xn − x ≤ ln ≤ x0 − x.
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3 Variational Iteration Method

We consider the following term with retarded to explain the basic concepts of Vari-
ational iteration method:

(10) Lu (t) +N [u (t) , u (ξ (t))] = f (t)

Here, L linear operator, N nonlinear operator, ξ (t) term with retarded and f (t)
nonhomogeneous term.

General Lagrange multiplier method is claimed by (10). He converted general
Lagrange multiplier method to correction function written as follows:

(11) uk+1 (t) = uk (t) +

t∫
0

λ (s) [Luk (s) +N (ũk (t) , ũk (ξ (t)))− f (s)] ds

Here λ general Lagrange multiplier, k order of approximation and ũk constrained
variation, that is δuk = 0(7),(8),(9).

Lagrange multipliers can be obtained exactly and easily for the linear problems.
But it is not easy to get them nonlinear problems. In VIM (variational iteration
method), ũk nonlinear term are considered as constrained variation, a concept ben-
efited from variational theory enabling to determination Lagrange multiplier.

In this study, ũk (ξ (t)) .Lagrange multiplier can be stated easily this assumption.
So using the equality,

u (t) = lim
t→∞

uk (t)

it can be arrived to the approximate solution successfully.

4 Findings

Example 1 Let us consider the boundary value problem:

(12)
xq (t) + tx

(
t− 1

2

√
t
)
= 2t3 − 2t5/2 − 1

2 t
2 − 1

2 t
3/2 + 4

x (t) = 0, (−1/16 ≤ t ≤ 0) , x (1) = 1

}
This equation can be written as the Fredholm-Volterra integral equation

xn (t) = −0.8742063492t+ 2t2 − 0.05714285714t7/2 − 0.044166666667t4(13)

−0.1269841270t9/2 + 0.1t5 +
t

8

∫ 1/2

0

[
3 + 4σ − 16σ2 +

3 + 28σ − 80σ2√
1 + 16σ

]
xn−1 (σ) dσ

− 1

16

∫ t−
√
t/2

0

[
(4t−1)+(16t−12)σ−16σ2+

(4t−1)+(48t−20)σ−80σ2√
1+16σ

]
xn−1 (σ) dσ

Let

h (t) = −0.8742063492t+ 2t2 − 0.05714285714t7/2 − 0.044166666667t4
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−0.1269841270t9/2 + 0.1t5,

K (σ) =
1

8

(
3 + 4σ − 16σ2 +

3 + 28σ − 80σ2√
1 + 16σ

)
,

K (t, σ) = − 1

16

(
(4t− 1) + (16t− 12)σ − 16σ2 +

(4t− 1) + (48t− 20)σ − 80σ2√
1 + 16σ

)
and

F Tλ x ≡
1/2∫
0

K (σ)x (σ) dσ,

V T
λ x ≡

t−
√
t/2∫

0

K (t, σ)x (σ) dσ.

Therefore, the integral equation (13) can be written as

x (t) = h (t) + tF Tλ x+ V T
λ x

and this equation is equivalent to problem (12). Some values of the solution of
this equation are obtained by using the ordinary successive approximations of or-
der second which are given in Table 1, where the first approximation is x0 (t) =
−0.8742063492t. Now, to solve the problem (12) with variational itertion method,
we consider the correction functional written in the form of

(14) xk+1 (t) = xk (t) +

t∫
0

λ (s)
[
xqk (s) + tx̃ (s− τ (s))− f (s)

]
ds

to solve the equation (12), where λ general Lagrange multiplier, x̃ (s− τ (s)) con-
straint variation, i.e. δx̃ (s− τ (s)) = 0 and

(15) f (s) = 2s3 − 2s5/2 − 1

2
s2 − 1

2
s3/2 + 4

(16) δxk+1 (t) = δxk (t) + δ

t∫
0

λ (s)
[
xqk (s)

]
ds

It is obtained stationary conditions from (16) as follows,

δxk (t) : 1− λp (t) |s=t= 0,

δxk (t) : λ (t) |s=t= 0,

δxk (t) : λq (t) |s=t= 0.
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General Lagrange multiplier is found from these equations,

(17) λ (s) = s− t.

We get iteration formula

(18) xk+1 (t) = xk (t) +

t∫
0

(s− t)
[
xqk (s) + txk

(
s−

√
s/2
)
− f (s)

]
ds

writing Lagrange multiplier in (14).It can be reached to the approximate solution
to desired order using appropriate initial function chosen. Here we choose x0 =
−0.2t2 − 0.9t and we solved the iteration formula to second order. So, we have

x2 (t) = 2t2 − 0.9t+ 0.2998184382t4 − 0.0215550132t5 − 0.1396825397t9/2

−0.2171428572t7/2 − 0.3076157001t6 + 0.01613127795t9 − 0.005300539828t11/2

−0.008897370511t13/2 + 0.003134507231t10 − 0.004320066827t17/2

+0.01938208824t15/2 − 0.01222748951t19/2 − 0.01274651145t8 + 0.2742694031t7.

ti x (ti) x12 (ti) x22 (ti) ε1 (ti) ε2 (ti)
0.0 0.000000 -0.000135 0.000000 0.000135 0.000000
0.2 -0.120000 -0.097001 -0.120392 0.022998 0.000392
0.4 -0.080000 -0.037704 -0.084735 0.042295 0.004735
0.6 0.120000 0.166049 0.101490 0.046049 0.018509
1.0 1.000000 1.007731 0.885868 0.007731 0.114131

(1)

Table 1.Values at some point in the interval [0, 1] .

Here
x (ti) is exact solution, x12 (ti) is the ordinary successive approximations of order
second for problem (1). x22 (ti) is approximations of order second of variational it-
eration method for problem (1). ε1 (ti) is error value of the ordinary successive
approximations of order second. ε2 (ti) is error value of approximations of order
second of variational iteration method. In 1, it has chosen as

ε1 (ti) =
∣∣ x (ti)− x12 (ti)

∣∣ , i = 1, 2, 3, 4, 5,

ε2 (ti) =
∣∣ x (ti)− x22 (ti)

∣∣ eps, i = 1, 2, 3, 4, 5.

5 Conclusion

The fundamental aim of this paper has been to apply convenient two approximation
method to the solution of differential equation with retarded argument. To find
solution of boundary value problem (1), it is obtained an integral equation equivalent
to the boundary value problem (1). In this paper, we obtained a Fredholm-Volterra
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Figure 1: The convergence of Un,α(f ;x) to f(x)

integral equation for the problem (1). After we obtain integral equation, we used
ordinary successive approximation method. However, we used variational iteration
method over boundary value problem (1). With these methods, we find successive
approximate solutions for problem (1). From 1, it is seen that values calculated
for problem (1) are coincide with exact solution. Our aim has been compare with
solutions obtained by carrying out ordinary successive approximation and variational
iteration method to problem (1). From 1, it can be seen easily that variational
iteration method gives good conclusion respect to ordinary successive approximation
method. The computations associated with the example mentioned above were
carried out by using Maple.
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On some Bernstein-type operators

Adriana Rusu

Abstract

The aim of this paper is to present an alternative proof for the theorems
given by Z. Finta in [2], which states that there exists no sequence Ln of gen-
eralized Bernstein-type operators that have ei and ej as fixed points for any
n = j, j + 1, . . ., but there exist an infinity of such operators that have ei and
ej as fixed points, where j is fixed.

2010 Mathematics Subject Classification: 41A36, 41A10.

Key words and phrases: Bernstein-type operators, Hahn-Banach type theorem.

1 Introduction

We consider the following sequence of operators

(1) Ln : C[0, 1] → C[0, 1], (Lnf)(x) =
n∑
k=0

pn,k(x)λn,k(f)

where pn,k(x) =

(
n
k

)
xk(1 − x)n−k, and λn,k, k = 0, n, n ∈ N are positive lin-

ear functionals defined on C[0, 1]. The operators given by (1) are Bernstein-type

operators. For λn,k(f) = f

(
k

n

)
we get the classical Bernstein operators:

Bn : C[0, 1] → C[0, 1], Bn(f)(x) =
n∑
k=0

pn,k(x)f

(
k

n

)
.

Approximating functions of type (1) operators was studied in [3], by I. Gavrea
and D. H. Mache.

In [2], Z. Finta proved the existence of type (1) operators, that have as fixed
points the monomials ei, ei(x) = xi, x ∈ [0, 1], i = 0, 1.

13
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For λn,k(f) = f

((
k(k − 1) . . . (k − j + 1)

n(n− 1) . . . (n− j + 1)

) 1
j

)
, k = 0, n, 1 ≤ j ≤ n, n ∈ N,

from (1) we get the following operator

(2) Un(f)(x) =
n∑
k=0

pn,kf

((
k(k − 1) . . . (k − j + 1)

n(n− 1) . . . (n− j + 1)

) 1
j

)

The Un operators, n ∈ N were introduced in [1], Proposition 11.
In [1] it was shown that

Un(e0) = e0

Un(ej) = ej

lim
n→∞

∥Unf − f∥ = 0, f ∈ C[0, 1].

Z. Finta proved the following results in [2].

Theorem 1 Let i, j ∈ {1, 2, . . .}, i < j be given. There exists no sequence {Ln} of
type (1) operators such that ei and ej are fixed points for Ln for any n = j, j+1, . . ..

Theorem 2 There is an infinity of Ln type (1) operators sequences such that

lim
n→∞

∥Lnf − f∥ = 0, f ∈ C[0, 1]

and Ln has ei and ej as fixed points, where j is fixed.

The previous theorem was proved by Z. Finta in [2] using a Hahn-Banach type
theorem. The aim of this paper is to give another proof for Theorem 1 and Theorem
2.

2 Main Results

The following is an alternative proof of Theorem 1.
We assume that for i < j we have

(3) (Lnei)(x) = xi

(4) (Lnej)(x) = xj

where n ≥ j.
Relation (3) can be written as follows:

n∑
k=0

pn,k(x)λn,k(ei) = xi

from where we deduce that
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λn,0(ei) = λn,1(ei) = . . . = λn,i−1(ei) = 0

(5) λn,i =
i!

n(n− 1) . . . (n− i+ 1)

From (4) we get

(6) λn,0(ej) = λn,1(ej) = . . . = λn,j−1(ej) = 0

Using the Cauchy-Buniakowsky-Schwarz inequality for positive linear functionals
we have

λn,i(ei) = λn,i(e
1
2
i−1 · e

1
2
i+1) ≤

√
λn,i(ei−1) · λn,i(ei + 1)

or

(7) λ2n,i(ei) ≤ λn,i(ei−1) · λn,i(ei+1).

In the same way, we have

(8)

λ2n,i(ei+1) ≤ λn,i(ei) · λn,i(ei+2)

. . .
λ2n,i(ej−2) ≤ λn,i(ej−3) · λn,i(ej−1)

From (7) and (8) we get:

(9) λ2
j−i

n,i (ei) ≤ λ2
j−i−1

n,i (ei−1) · λ2
j−i−2

n,i (ei) · . . . · λ2n,i(ei−3) · λn,i(ej−1)

From (6) and (9) we get
λn,i(ei) = 0,

which contradicts (5).
In the following theorem, we emphasize a type (1) class operators that have 1

and ej as fixed points.

Theorem 3 Let (an)n∈N, an ∈ (0, 1) be a sequence of positive numbers such that
lim
n→∞

an = 0. The sequence of operators defined by

(10)

Ln(f)(x) =

n∑
k=0

pn,k(x)

[
(1− an)f

((
k(k − 1) · · · (k − j + 1)

n(n− 1) · · · (n− j + 1)

1
j

))

+an

(
1− k(k−1) · (k−j+1)

n(n− 1) · · · (n− j+1)

)
f(0)+an

k(k − 1) · · · (k−j+1)

n(n− 1) · · · (n− j + 1)
f(1)

]
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has the following properties:

(11)
Lne0 = e0
Lnej = ej

and

(12) lim
n→∞

∥Lnf − f∥ = 0, f ∈ C[0, 1].

Proof. We notice that the operator (Lnf)(x) can be written in the following way

(13) (Lnf)(x) = (1− an)(Unf)(x) + an[(1− xj)f(0) + xjf(1)]

The relation (13) results from (2) and from the following equality

xj =

n∑
k=0

k(k − 1) · · · (k − j + 1)

n(n− 1) · · · (n− j + 1)
pn,k(x)

Because Une0 = e0 and Unej = ej , from (12) we have

Lneo = e0

Lnej = ej

To prove (12), we see that

∥Lnf − f∥ ≤ ∥Unf − f∥+ 2an∥f∥

from where the proof of the theorem results.
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In this paper we present preserving properties and estimation of coefficients
for functions that belong to a subclass of analytic functions M∗(α, β, γ,A, λ).
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1 Introduction

Let S denote the class of normalised analytic univalent function f defined by

(1) f(z) = z +
∞∑
n=2

anz
n,

for z ∈ U = {z : |z| < 1}.
Let T denote the subclass of S consisting functions of the form

(2) f(z) = z −
∞∑
n=2

|an|zn.

Definition 1 [2] Let IA be a Alexander type integral operator defined as:

IA : A→ A, IA(F ) = f, where

(3) f(z) =
∫ z
0
F (t)
t dt.

19
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Definition 2 [1] Let Ia be a Bernardi type integral operator defined as:

Ia : A→ A, Ia(F ) = f, a = 1, 2, 3, . . . , where

(4) f(z) = a+1
za

z∫
0

F (t) · ta−1dt.

Definition 3 [1] Let La be a generalization of the previously integral operator de-
fined as:

La : A→ A, La(F ) = f, a ∈ C,Re a ≥ 0, where

(5) f(z) = a+1
za

z∫
0

F (t) · ta−1dt.

Definition 4 [2] Let Ic+δ be the integral operator defined as: Ic+δ : A → A, 0 <
u ≤ 1 , 1 ≤ δ <∞ , 0 < c <∞ ,

(6) f(z) = Ic+δ(F )(z) = (c+ δ)

∫ 1

0
uc+δ−2F (uz)du.

Remark 1 [2] For δ = 1 and c=1,2,. . . , from the integral operator Ic+δ we obtain
the Bernardi integral operator defined by (4).

Definition 5 [2] Let F ∈ A, F (z) = z + b2z
2 + · · ·+ bnz

n + . . ., and a ∈ R∗. We
define the integral operator L : A→ A by

(7) f(z) = L(F )(z) =
1 + a

za

∫ z

0
F (t)(ta−1 + ta+1)dt.

2 Preliminary results

Further, we define the class M(α, β, γ,A, λ) as follows:

Definition 6 [3] A function f given by (1) is said to be a member of the class
M(α, β, γ,A, λ) if it satisfies∣∣∣∣ zf ′(z)− f(z)

αzf ′(z)−Af(z)− (1− λ)(1−A)γf(z)

∣∣∣∣ < β,

where 0 ≤ α ≤ 1, 0 < β ≤ 1, −1 ≤ A < 1, 0 ≤ λ ≤ 1, 0 ≤ γ < 1 for all z ∈ U.

Let us write

(8) M∗(α, β, γ,A, λ) = T ∩M(α, β, γ,A, λ).
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Theorem 1 [3] If f ∈ S satisfies
(9)

∞∑
n=2

(n− 1 + β(nα−A− (1− λ)(1−A)γ))|an| ≤ β(α−A− (1− λ)(1−A)γ),

where 0 ≤ α ≤ 1, 0 < β ≤ 1, −1 ≤ A < 1, 0 ≤ λ ≤ 1, 0 ≤ γ < 1, then f ∈
M(α, β, γ,A, λ).

Theorem 2 [3] Let the function f be defined by (1) and let f ∈ T. Then f ∈
M∗(α, β, γ,A, λ), if and only if (9) is satisfied. The result (9) is sharp.

Corollary 1 [3] Let the function f be defined by (1) and let f ∈ M∗(α, β, γ,A, λ),
then

(10) an ≤ β(α−A−(1−λ)(1−A)γ)
(n−1+β(nα−A−(1−λ)(1−A)γ)) , n ≥ 2.

3 Main results

Theorem 3 The Alexander type integral operator defined by (3) preserves the class
M∗(α, β, γ,A, λ), that is: If F ∈ M∗(α, β, γ,A, λ), then f(z) = IAF (z) ∈
M∗(α, β, γ,A, λ), for F (z) = z −

∞∑
n=2

anz
n, an ≥ 0.

Proof. Let F ⊂ T, F (z) = z −
∞∑
n=2

anz
n, an ≥ 0. Then

f(z) = IAF (z) =

z∫
0

F (t)

t
dt

=

z∫
0

1

t
(t−

∞∑
n=2

an t
n)dt

= z −
∞∑
n=2

an
n
zn = z −

∞∑
n=2

cnz
n, with

cn = an
n ≥ 0, n ≥ 2. It follows that f ∈ T. We have now to prove that f ∈

M∗(α, β, γ,A, λ). Using Theorem 2 we need to prove that:
(11)

∞∑
n=2

(n− 1 + β(nα−A− (1− λ)(1−A)γ))|cn| ≤ β(α−A− (1− λ)(1−A)γ),

for 0 ≤ α ≤ 1, 0 < β ≤ 1, −1 ≤ A < 1, 0 ≤ λ ≤ 1, 0 ≤ γ < 1. This means:
(12)

∞∑
n=2

(n− 1 + β(nα−A− (1− λ)(1−A)γ)) |an|n ≤ β(α−A− (1− λ)(1−A)γ).

But we have |an|
n ≤ |an|, for n ≥ 2, and by using (9) and (12), we observe that

inequality (11) is fulfilled.This means that f ∈M∗(α, β, γ,A, λ).
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Theorem 4 The integral operator Ic+δ defined by (6) preserves the class
M∗(α, β, γ,A, λ), that is: If F ∈M∗(α, β, γ,A, λ), then f(z) = Ic+δ(F )(z) ∈
M∗(α, β, γ,A, λ), for F (z) = z −

∞∑
n=2

an z
n, an ≥ 0 .

Proof. Let F ∈M∗(α, β, γ,A, λ), F (z) = z −
∞∑
n=2

anz
n, an ≥ 0.

We have, from Theorem 2:
(13)

∞∑
n=2

(n− 1 + β(nα−A− (1− λ)(1−A)γ))|an| ≤ β(α−A− (1− λ)(1−A)γ).

From (6) we obtain f(z) = Ic+δ(F )(z) = z −
∞∑
n=2

c+δ
c+n+δ−1 an z

n, where 0 < c <

∞, 1 ≤ δ <∞. We also remark that for 0 < c <∞, n ≥ 2 and 1 ≤ δ <∞,we have

(14) 0 < c+δ
c+n+δ−1 < 1.

Thus f ∈ T and by using Theorem 2 we have only to prove that.
(15)

∞∑
n=2

(n− 1 + β(nα−A− (1− λ)(1−A)γ)) c+δ
c+n+δ−1 |an| ≤ β(α−A− (1− λ)(1−A)γ).

where 0 ≤ α ≤ 1, 0 < β ≤ 1, −1 ≤ A < 1, 0 ≤ λ ≤ 1, 0 ≤ γ < 1 and 0 < c < ∞
and 1 ≤ δ <∞, n ≥ 2.
By using the relation (14) we have

c+ δ

c+ n+ δ − 1
· |an| < |an|,

for 0 < c < ∞, n ≥ 2, 1 ≤ δ < ∞, and thus from (15) we conclude that the
condition (13) take place and thus the proof it is complete.

The following theorem is proved similarly (see Remark 1):

Theorem 5 The Bernardi type integral operator defined by (4) preserves the class
M∗(α, β, γ,A, λ), that is: If F ∈ M∗(α, β, γ,A, λ), then f(z) = IaF (z) ∈
M∗(α, β, γ,A, λ), for F (z) = z −

∞∑
n=2

anz
n, an ≥ 0.

Theorem 6 Let F ∈ M∗(α, β, γ,A, λ) with 0 ≤ α ≤ 1, 0 < β ≤ 1, −1 ≤ A <

1, 0 ≤ λ ≤ 1, 0 ≤ γ < 1, F (z) = z −
∞∑
n=2

bnz
n, bn ≥ 0. For f(z) = La(F )(z),

f(z) = z −
∞∑
n=2

anz
n, an ≥ 0, z ∈ U , where the integral operator La it is defined by

(5), we have:

|an| ≤
∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(n− 1 + β(nα−A− (1− λ)(1−A)γ))
· a+ 1

a+ n

∣∣∣∣ , n ≥ 2.
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Proof. For f = La(F )(z) with F (z) = z −
∞∑
n=2

bnz
n and f(z) = z −

∞∑
n=2

anz
n we

have

an = bn ·
a+ 1

a+ n
,

where a ∈ C, Re a ≥ 0, n ≥ 2.
The coefficient bounds for the functions belonging to the class M∗(α, β, γ,A, λ) are

bn ≤ β(α−A− (1− λ)(1−A)γ)

(n− 1 + β(nα−A− (1− λ)(1−A)γ))
, n ≥ 2.

For n ≥ 2 we obtain

|an| = |bn| ·
∣∣∣∣ a+ 1

a+ n

∣∣∣∣ ≤
≤
∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(n− 1 + β(nα−A− (1− λ)(1−A)γ))

∣∣∣∣ · ∣∣∣∣ a+ 1

a+ n

∣∣∣∣ =
=

∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(n− 1 + β(nα−A− (1− λ)(1−A)γ))
· a+ 1

a+ n

∣∣∣∣ .
Hence the theorem is proved.

Theorem 7 Let F ∈ M∗(α, β, γ,A, λ) with 0 ≤ α ≤ 1, 0 < β ≤ 1, −1 ≤ A <

1, 0 ≤ λ ≤ 1, 0 ≤ γ < 1, F (z) = z −
∞∑
n=2

bnz
n, bn ≥ 0. For f(z) = L(F )(z),

f(z) = z −
∞∑
n=2

anz
n, an ≥ 0, z ∈ U , where the integral operator L it is defined by

(7), we have:

|a2| ≤
∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(1 + β(2α−A− (1− λ)(1−A)γ))

∣∣∣∣ · ∣∣∣∣a+ 1

a+ 2

∣∣∣∣ ,
|a3| ≤

[∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(2 + β(3α−A− (1− λ)(1−A)γ))

∣∣∣∣+ 1

]
·
∣∣∣∣a+ 1

a+ 3

∣∣∣∣ ,
|an| ≤

∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(n− 1 + β(nα−A− (1− λ)(1−A)γ))

∣∣∣∣ · ∣∣∣∣ a+ 1

a+ n

∣∣∣∣
+

∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(n− 3 + β((n− 2)α−A− (1− λ)(1−A)γ))

∣∣∣∣ · ∣∣∣∣ a+ 1

a+ n

∣∣∣∣ .
Proof. For f = L(F )(z) with F (z) = z −

∞∑
n=2

bnz
n and f(z) = z −

∞∑
n=2

anz
n we

have:

a2 = b2 ·
a+ 1

a+ 2
,
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a3 = (b3 + 1) · a+ 1

a+ 3
,

an = (bn + bn−2) ·
a+ 1

a+ n
,

where a ∈ R∗, n ≥ 4.
The coefficient bounds for the functions belonging to the class M∗(α, β, γ,A, λ) are:

bn ≤ β(α−A− (1− λ)(1−A)γ)

(n− 1 + β(nα−A− (1− λ)(1−A)γ))
, n ≥ 2.

For n ≥ 4 we obtain:

|an| = |bn + bn−2| ·
∣∣∣∣ a+ 1

a+ n

∣∣∣∣
≤ (|bn|+ |bn−2|) ·

∣∣∣∣ a+ 1

a+ n

∣∣∣∣
≤
∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(n− 1 + β(nα−A− (1− λ)(1−A)γ))

∣∣∣∣ · ∣∣∣∣ a+ 1

a+ n

∣∣∣∣
+

∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(n− 3 + β((n− 2)α−A− (1− λ)(1−A)γ))

∣∣∣∣ · ∣∣∣∣ a+ 1

a+ n

∣∣∣∣ .
|an| ≤

∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(n− 1 + β(nα−A− (1− λ)(1−A)γ))

∣∣∣∣ · ∣∣∣∣ a+ 1

a+ n

∣∣∣∣
+

∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(n− 3 + β((n− 2)α−A− (1− λ)(1−A)γ))

∣∣∣∣ · ∣∣∣∣ a+ 1

a+ n

∣∣∣∣ .
For n = 2 we have:

|a2| = |b2| ·
∣∣∣∣a+ 1

a+ 2

∣∣∣∣
≤
∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(1 + β(2α−A− (1− λ)(1−A)γ))

∣∣∣∣ · ∣∣∣∣a+ 1

a+ 2

∣∣∣∣ .
Similarly for n = 3 we have:

|a3| ≤
[∣∣∣∣ β(α−A− (1− λ)(1−A)γ)

(2 + β(3α−A− (1− λ)(1−A)γ))

∣∣∣∣+ 1

]
·
∣∣∣∣a+ 1

a+ 3

∣∣∣∣ .
Hence the theorem is proved.
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e-mail: petrica.dicu@yahoo.com

Radu Diaconu
Lucian Blaga University of Sibiu
Department of Mathematics and Informatics
No.5-7, Dr. I. Ratiu Street, Sibiu, 550012, România
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Simultaneous approximation Baskakov Durrmeyer
Kantorovich operators

Gulsum Ulusoy, Emre Deniz

Abstract

To investigate approximation properties of integrable functions, Durrmeyer
and Kantorovich modification of approximation operators are main tool. To
combine these modification for Baskakov operators, we recently introduced a
generalization of Baskakov operators in [6]. In this paper, we investigate point-
wise convergence of derivatives of these operators by the means of Voronovskaya
type asymptotic formula. This formula is presented in quantitative form in
terms of a modulus of smoothness, which allows us describe the rate of pointwise
convergence and the upper bound for the error of approximation simultaneously.

2010 Mathematics Subject Classification: 41A36, 41A25.
Key words and phrases: Baskakov Durrmeyer Operators, Baskakov

Kantorovich Operatorss, Simultaneous approximation.

1 Introduction

Very recently, in [14], Stan defined a new operator using the structural properties
of Durrmeyer and Kantorovich methods for classical Bernstein operators and called
Bernstein Durrmeyer Kantorovich operator which is defined by

K̃n (f ;x) = (n+ 3)

n∑
k=0

(
n

k

)
xk (1− x)n−k

∫ 1

0

(
n

k

)
tk (1− t)n−k f (t) dt,

where x ∈ [0, 1] and n ∈ N. Thus an approximation process on a bounded interval
representing again an integral form in sense of Bernstein operator was obtained.
Also some approximation properties of mentioned operator was examined in the
continuos functions space and Lebesgue spaces.

Later in [6], to extend Stan’s construction to unbounded interval, authors have
constructed a new sequence of integral type operators which contain characteristic
properties of Baskakov Durrmeyer and Baskakov Kantorovich operators that is

(1) B̃n (f ;x) = (n− 1)

∞∑
k=0

pn+2,k (x)

∫ ∞

0
f (u) pn,k+1 (u) du,

27
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where pn,k (x) =
(
n+k−1

k

)
xk (1 + x)−(n+k), x ∈ [0,∞) and n ∈ N.

These operators are called Baskakov Durrmeyer Kantorovich operators (BDK).
It is shown that these operators reproduce constants as well as linear functions. Also,
the alternate form of these operators in terms of hypergeometric series were given.
For more details of Baskakov Durrmeyer and Baskakov Kantorovich operators and
some generalizations we can refer the readers to [1, 3, 5, 13] and references therein.

The aim of the paper is to study a Voronovskaya type asymptotic formula for
derivatives of functions by the corresponding order of derivatives of operators. Also
we give an error estimate in simultaneous approximation by the BDK operators.

Throughout the paper we consider the functions belong to class of all Lebesgue
measurable functions f on [0,∞), that is,

H ≡
{
f :

∫ ∞

0

|f (t)|
(1 + t)n

dt <∞, for some n ∈ N
}

with the norm ∥·∥Cα
given by ∥f∥Cα

= sup
t∈[0,∞)

|f(t)|
tα .

Considering this space, several researchers studied simultaneous approximation
properties of some other operators. In this direction we refer [2], [7], [12], [10] and
references therein.

2 Representations and moments

In the sequel, we shall need the following results. First we give a collection of some
properties of the kernel functions pn,k which can be easily derived from the definition
of the operators Bn.

Lemma 1 [11] For every n ∈ N, n > 1, k ∈ N ∪ {0} , x ∈ [0,∞) we have

1.
∞∑
k=0

pn,k(x) = 1

2.
∞∫
0

pn,k(t)dt =
1

n− 1

3.
k

n
pn,k(x) = xpn,k−1(x)

4. φ(x)2
d

dx
pn,k(x) = (k − nx)pn,k(x)

5. n [pn+1,k−1(x)− pn+1,k(x)] =
d

dx
pn,k(x).

Lemma 2 Let f be an r times differentiable function on [0,∞) such that f (r−1) (u) =
O (uα) for some α > 0 as u→ ∞. For r = 0, 1, 2, ... and n > α+ r, we have

dr

dxr
B̃n (f ;x) = (n− 1)β (n, r)

∞∑
k=0

pn+r+2,k (x)

∫ ∞

0
pn−r,k+r+1 (u) f

(r) (u) du,
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where β (n, r) =
r−1∏
j=0

(n+j+2)
(n−j−1) for β (n, 0) = 1.

Lemma 3 Let r, s ∈ N ∪ {0} and n > r, if we define the functions B̃r,n,s (x) as
follows:

B̃r,n,s = (n− r − 1)

∞∑
k=0

pn+r+2(x)

∞∫
0

pn−r,k+r+1(t)(t− x)sdt,

then the recurrence relation holds:

[n− (r + s+ 2)]B̃r,n,s+1 = φ2(x)[B̃′
r,n,s(x) + 2sB̃r,n,s−1]

+ (s+ r + 2)(1 + 2x)B̃r,n,s(x),(2)

where φ(x) =
√
x(1 + x) and n > (r + s+ 2). Consequently,

B̃r,n,0 = 1

B̃r,n,1 =
(r + 2)(1 + 2x)

n− (r + 2)

B̃r,n,2 =
φ2(x)2n+ (1 + 2x)2(r + 2)(r + 3)

[n− (r + 2)] [n− (r + 3)]
.

For all x ∈ [0,∞) , B̃r,n,s (x) = O
(
(n+ 2)−⌊

s+1
2 ⌋
)
, where ⌊α⌋ denotes the integer

part of α.

Proof. Firstly, let us prove the (2). It is clear that

φ2(x)B̃′
r,n,s(x) = (n− r − 1)

∞∑
k=0

φ2(x)p′n+r+2,k(x)

∞∫
0

(t− x)spn−r,k+r+1(t)dt

−sφ2(x)B̃r,n,s−1(x).

Using Lemma 1-(4), we get

φ2(x)B̃′
r,n,s(x)

= (n− r − 1)

∞∑
k=0

[(k − (n+ r + 2)x]pn+r+2,k(x)

∞∫
0

(t− x)spn−r,k+r+1(t)dt

−sφ2(x)B̃r,n,s−1(x)

= (n− r − 1)

∞∑
k=0

pn+r+2,k(x)

∞∫
0

[k + r + 1− [(n− r)t]− (r + 1)(1 + 2x)

+(n− r)(t− x)](t− x)spn−r,k+r+1(t)dt− sφ2(x)B̃r,n,s−1(x)
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= (n− r − 1)

∞∑
k=0

pn+r+2,k(x)

∞∫
0

[k + r + 1− [(n− r)t](t− x)spn−r,k+r+1(t)dt

− (n− r − 1)

∞∑
k=0

pn+r+2,k(x)(r + 1)(1 + 2x)

∞∫
0

(t− x)spn−r,k+r+1(t)dt

+(n− r − 1)
∞∑
k=0

pn+r+2,k(x)

∞∫
0

(n− r)(t− x)(t− x)spn−r,k+r+1(t)dt

−sφ2(x)B̃r,n,s−1(x)

= (n− r − 1)
∞∑
k=0

pn+r+2,k(x)

∞∫
0

φ2(t)p′n−r,k+r+1(t)(t− x)sdt

−(r + 1)(1 + 2x)B̃r,n,s(x) + (n− r)B̃r,n,s+1 − sφ2(x)B̃r,n,s−1(x).

Using integration by parts, we have

φ2(x)B̃′
r,n,s(x)=

∞∑
k=0

pn+r+2,k(x)

∞∫
0

pn−r,k+r+1(t)[−(1+2t)(t−x)s−sφ2(t)(t−x)s−1]dt

− (r + 1)(1 + 2x)B̃r,n,s(x) + (n− r)B̃r,n,s+1 − sφ2(x)B̃r,n,s−1(x).(3)

Since

−sφ2(t)− (1 + 2t)(t− x) = −sφ2(x)− (s+ 1)(1 + 2x)(t− x)− (s+ 2)(t− x)2,

we obtain from (3)

φ2(x)B̃′
r,n,s(x) = −sφ2(x)B̃r,n,s−1 − (s+ 1)(1 + 2x)B̃r,n,s − (s+ 2)B̃r,n,s+1

−(r + 1)(1 + 2x)B̃r,n,s(x) + (n− r)B̃r,n,s+1 − sφ2(x)B̃r,n,s−1(x),

which is desired. The moments can be easily seen from the recurrence formula.

Lemma 4 [2] For each x ∈ (0,∞) and r ∈ N∪{0}, there exist polynomials qi,j,r(x)
in x independent of n and k such that

(x (1 + cx))r
dr

dxr
pn,k (x) =

∑
2i+j≤r,i,j≥0

(n)i ((k − nx))j qi,j,r (x) pn,k (x) ,

where φ(x) =
√
x(1 + cx), pn,k (x) =

(
n+ k − 1

k

)
xk

(1+x)n+k .
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3 Main results

This section deals with the main results, we study Voronovskaya type asymptotic
formula and give an error estimate in simultaneous approximation. Now we state
our main results as follows:

Theorem 1 Let f ∈ H be bounded on every finite subinterval of [0,∞) admitting a
derivative of order (r + 2) at a fixed point x ∈ (0,∞) . Let f (u) = O (uα) as u→ ∞
for some 0 < α, then we have

lim
n→∞

n

{
(n−(r+1))

(n−1)β (n, r)
(B̃(r)

n f)(x)−f (r) (x)
}
=(r+2)(1+2x)f (r+1) (x)+φ2(x)f (r+2) (x) .

Proof. By finite Taylor’s expansion of f, we have

f (u) =

r+2∑
i=0

f (i) (x)

i!
(u− x)i + ε (u, x) (u− x)r+2 ,

where ε (u, x) → 0 as u→ x. Using Lemma 2 we can have

n

{
(n− (r + 1))

(n− 1)β (n, r)
(B̃(r)

n f)(x)− f (r) (x)

}
= n (n− (r + 1))

∞∑
k=0

pn+r+2,k (x)

×
∞∫
0

pn−r,k+r+1 (u)
[
f (r)(u)−f (r) (x)

]
du

= n (n− (r + 1))
∞∑
k=0

pn+r+2,k (x)×
∞∫
0

pn−r,k+r+1 (u)
[
f (r+1) (x) (u− x)

+
f (r+2) (x)

2!
(u− x)2 +

dr

dur

[
ε (u, x) (u− x)r+2

]]
du

= f (r+1) (x)nB̃r,n,1 +
f (r+2) (x)

2!
nB̃r,n,2

+n (n− (r + 1))

∞∑
k=0

pn+r+2,k (x)

∞∫
0

pn−r,k+r+1 (u)
dr

dur

[
ε (u, x) (u− x)r+2

]
du

= f (r+1) (x)nB̃r,n,1 +
f (r+2) (x)

2!
nB̃r,n,2 + In,

where

In =
n (n− (r + 1))

β (n, r)

∞∑
k=0

p
(r)
n+2,k (x)

∞∫
0

pn,k+1 (u) ε (u, x) (u− x)r+2 du.
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In order to prove the theorem it is sufficient the show that In → 0 as n→ ∞. Using
Lemma (4) we can get

|In| ≤ n (n− (r + 1))

β (n, r)

∞∑
k=0

∑
2i+j≤r,i,j≥0

(n+ 2)i |k − x(n+ 2)|j |qi,j,r (x)|
(x (1 + x))r

pn+2,k (x)

×
∞∫
0

pn,k+1 (u) |ε (u, x)| |u− x|r+2 du

≤ C
n (n− (r + 1))

β (n, r)

∑
2i+j≤r,i,j≥0

(n+ 2)i
∞∑
k=0

|k − x(n+ 2)|j pn+2,k (x)

×
∞∫
0

pn,k+1 (u) |ε (u, x)| |u− x|r+2 du

≤ C
n (n− (r + 1))

β (n, r)

∑
2i+j≤r,i,j≥0

(n+ 2)i
( ∞∑
k=0

pn+2,k (x) |k − x(n+ 2)|2j
) 1

2

×

[ ∞∑
k=0

pn+2,k (x)
(
pn,k+1 (u) |ε (y, x)| |u− x|r+2 du

)2] 1
2

≤ C
n (n−(r+1))

β (n, r)
O
(
n

r
2

) ∞∑
k=0

pn+2,k (x)

 ∞∫
0

pn,k+1 (u) |ε (u, x)| |u−x|r+2 du

2
1
2

,

where C = C (x) = sup
2i+j≤r,i,j≥0

|qi,j,r(x)|
(x(1+x))r

. For a given ε > 0, there exists a δ > 0 such

that |ε (u, x)| < ε whenever 0 < |u− x| < δ. For |u− x| ≥ δ, we have |ε (u, x)| ≤
K |u− x|s for any s ≥ 0. Therefore, we write ∞∫

0

pn,k+1 (u) |ε (u, x)| |u− x|r+2 du

2

≤
∞∫
0

pn,k+1 (u) dy

∞∫
0

pn,k+1 (y) (ε (u, x))
2 (u− x)2r+4 du

=
1

(n− 1)

∞∫
0

pn,k+1 (y) (ε (u, x))
2 (u− x)2r+4 du

=
1

(n− 1)

 ∫
|y−x|<δ

pn,k+1 (u) (ε (u, x))
2 (u− x)2r+4 du
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+

∫
|y−x|≥δ

pn,k+1 (u) (ε (u, x))
2 (y − x)2r+4 du

 .

Thus, using Lemma 3, we have

∞∑
k=0

pn+2,k (x)

 ∞∫
0

pn,k+1 (u) |ε (u, x)| |u− x|r+2 du

2

≤ (n− 1)

(n− 1)2

∞∫
0

pn,k+1 (u) (ε (u, x))
2 (u− x)2r+4 du

+
K2 (n− 1)

(n− 1)2

∫
|u−x|≥δ

pn,k+1 (u) (u− x)2s+2r+4

= (ε (y, x))2O
(
[n]−(r+4)

)
+K2O

(
[n]−(r+s+4)

)
= (ε (y, x))2O

(
[n]−(r+4)

)
+O

(
[n]−(r+s+4)

)
.

Hence by using Lemma 3 we get

|In| ≤ C
n (n− (r + 1))

β (n, r)
[n]−(

r
2) (ε (u, x))2O

(
[n]−(r+4)

) 1
2
+ o (1)

≤ ε+ o (1) choosing s > 0.

Since ε is arbitrary, this implies that In → 0 as n→ ∞.

Theorem 2 Let f ∈ H be bounded on every finite subinterval of [0,∞) and
f (u) = O (uα) as u → ∞ for some 0 < α ≤ s. If f (r+1) exist and is continuous on
(a− δ, b+ δ) ⊂ [0,∞) , δ > 0, then for sufficiently large n,∥∥∥∥ drdxr (B̃nf)(x)− f (r) (x)

∥∥∥∥ ≤ C1n
−1
(∥∥∥f (r)∥∥∥+ ∥∥∥f (r+1)

∥∥∥)
+C2n

− 1
2ω
(
f (r+1), n−

1
2

)
+O

(
n

r−s
2

)
holds for any s > 1, where C1 and C2 are constants independent of f and n, and ∥.∥
is sup-norm on [a, b] .

Proof. By finite Taylor’s expansion of f we have

f (u) =

r+1∑
i=0

f (i) (x)

i!
(u− x)i +

{
f (r+1) (ζ)− f (r+1) (x)

}
(r + 1)!

(u− x)r+1 χ (u)

+h (u, x) (1− χ (u)) ,
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where ζ lies between u and x and χ (u) is the characteristic function of (a− δ, b+ δ) .
For u ∈ (a− δ, b+ δ) and x ∈ [a, b] we have

f (u) =

r+1∑
i=0

f (i) (x)

i!
(u− x)i +

{
f (r+1) (ζ)− f (r+1) (x)

}
(r + 1)!

(u− x)r+1 .

For u ∈ [0,∞) \ (a− δ, b+ δ) and x ∈ [a, b] we define

h (u, x) = f (u)−
r+1∑
i=0

f (i) (x)

i!
(u− x)i .

Now, we can write

(B̃(r)
n f)(x)− f (r) (x) = (n− 1)β (n, r)

r+1∑
i=0

f (i) (x)

i!

∞∑
k=0

pn+r+2,k (x)

×
∫ ∞

0
pn−r,k+r+1 (u)

dr

dur
(u− x)i du− f (r) (x)

+ (n− 1)β (n, r)
∞∑
k=0

pn+r+2,k (x)

∫ ∞

0
pn−r,k+r+1 (u)

×

[{
f (r+1) (ζ)− f (r+1) (x)

}
(r + 1)!

(u− x)r+1 χ (u)

+h (u, x) (1− χ (u))](r) du

= I1 + I2 + I3,

where

I1 = (n− 1)β (n, r)
r+1∑
i=0

f (i) (x)

i!

∞∑
k=0

pn+r+2,k (x)

×
∫ ∞

0
pn−r,k+r+1 (u)

dr

dur
(u− x)i du− f (r) (x)

I2 = (n− 1)
∞∑
k=0

dr

dxr
pn+2,k (x)

×
∞∫
0

pn,k+1 (u)

{
f (r+1) (ζ)− f (r+1) (x)

}
(r + 1)!

(u− x)r+1 χ (u) du

I3 = (n− 1)
∞∑
k=0

dr

dxr
pn+2,k (x)

∞∫
0

pn,k+1 (u)h (u, x) (1− χ (u)) du.

Using Lemma 3, we have

I1 = f (r) (x)

{
(n− 1)β (n, r)

n− (r + 1)
B̃r,n,0 (x)− 1

}
+

(n− 1)β (n, r)

n− (r + 1)
B̃r,n,1 (x) f

(r+1) (x) .
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Now, using Lemma 4, we write

|I2| ≤ (n− 1)
∑

2i+j≤r,i,j≥0

(n+ 2)i
∞∑
k=0

pn+2,k (x) |k − (n+ 2)x|j |qi,j,r (x)|
xr (1 + x)r

×
∞∫
0

pn,k+1 (u)

∣∣f (r+1) (ζ)− f (r+1) (x)
∣∣

(r + 1)!
|(u− x)|r+1 du

≤ C (n− 1)
∑

2i+j≤r,i,j≥0

(n+ 2)i
∞∑
k=0

pn+2,k (x) |k − (n+ 2)x|j

×
∞∫
0

pn,k+1 (u)

(
1 +

|u− x|
δ

)
ω
(
f (r+1), δ

)
|u− x|r+1 du,

for all δ > 0, where C is a constant. Thus we obtain

|I2| = C(n− 1)ω
(
f (r+1), δ

) ∑
2i+j≤r,i,j≥0

(n+ 2)i
∞∑
k=0

pn+2,k (x) |k − (n+ 2)x|j

×
∞∫
0

pn,k+1 (u)

(
|u− x|r+1 +

|u− x|
δ

r+2
)
du.

Applying Schwarz’s inequality for integration and then for summation, in a similar
way as in the proof of Theorem 1, we deduce

|I2| ≤ Cω
(
f (r+1), δ

) ∑
2i+j≤r,i,j≥0

(n+ 2)i
( ∞∑
k=0

pn+2,k (x) (k − (n+ 2)x)2j
)1/2

×

(n− 1)

∞∑
k=0

pn+2,k (x)

∞∫
0

pn,k+1 (u) |u− x|2r+2 du

 1
2

+
1

δ
Cω

(
f (r+1), δ

) ∑
2i+j≤r,i,j≥0

(n+ 2)i
( ∞∑
k=0

pn+2,k (x) (k − (n+ 2)x)2j
)1/2

×

(n− 1)

∞∑
k=0

pn+2,k (x)

∞∫
0

pn,k+1 (u) |u− x|2r+4 du

 1
2

≤ Cω
(
f (r+1), δ

){
n−1/2 +

1

δ
n−1

}
= Cn−1/2ω

(
f (r+1), δ

)
.

Thus, choosing δ = n−1/2 we have

|I2| ≤ Cn−1/2ω
(
f (r+1), n−1/2

)
.
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Since h (u, x) = O (u− x)s , for any s ∈ N with s ≥ α we have

|I3| ≤ K (n− 1)
∞∑
k=0

∑
2i+j≤r,i,j≥0

(n+ 2)i (k − (n+ 2)x)j pn+2,k (x)

×
∫

|u−x|≥δ

pn,k+1 (u) |u− x|s du

where K is a constant. In a similar way as in I2, we have

|I3| ≤ Kn−1/2.

Choosing s > r + 1, we obtain the limit I3 → 0 as n→ ∞.
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Dirichlet boundary value problem for a nth order
complex partial differential equation

Ilker Gençtürk, Kerim Koca

Abstract

In this work, we investigate the solvability condition of the problem

∂nz̄ w + c∂z∂
n−1
z w = f(z), f ∈ Lp(D,C), p > 2, n = 1, 2, ...,

∂k−1
z̄ w|∂D = γk, γk ∈ C(∂D;C), 0 ≤ k ≤ n− 1

in the unit disc of complex plane, for |c| < 1. Moreover, under this condition,
we get the unique solution of the problem is given in explicit form.

2010 Mathematics Subject Classification: 30E20, 30E25, 32A55

Key words and phrases: Dirichlet boundary value problem, Beltrami equation,
polyanalytic equation.

1 Introduction

In [1] and [2], Schwarz, Dirichlet and Neumann boundary value problems for the
Beltrami equation wz̄ + cwz = f with constant coefficient in the unit disc were
investigated. Moreover, in [6] Vekua searched the Beltrami equation in the theory
of quasi-conformal mappings. In additionly, in [1] it was given that the solvability
of Schwarz and Dirichlet problems for the operators

wzz + cwzz = f, |c| < 1.

In this paper, we describe the solvability conditions and solutions of the Dirichlet
problem for the following complex partial differential equation in the unit disc D =
{z ∈ C : |z| < 1}

(1) ∂nz̄w + c∂z∂
n−1
z̄

w = f(z), f ∈ Lp(D,C), p > 2, n = 1, 2, ...,

39
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(2) ∂kzw|∂D = γk , 0 ≤ k ≤ n− 1, γk ∈ C(∂D,C),

where the complex partial differential operators ∂z and ∂z are defined by

∂z =
1

2
(∂x − i∂y), ∂z =

1

2
(∂x + i∂y), z = x+ iy, x, y ∈ R.

2 Integral Representations

The fundemental tools for solving boundary value problems for complex partial
differential equations are Gauss theorem and the Cauchy-Pompeiu representation
formula. Let D be a regular domain of the complex plane C, i.e. bounded domain
with smooth boundary ∂D.

Theorem 1 (Gauss theorem, complex form)[3] Let D be a regular domain of C, w
∈ C1(D;C) ∩ C(D,C), then∫

D

wz(z)dxdy =
1

2i

∫
∂D

w(z)dz

and ∫
D

wz(z)dxdy = − 1

2i

∫
∂D

w(z)dz.

A complex-valued function w which is independent of z, i.e., satisfying the dif-
ferential equation in open domain D in C

wz = 0

is called an analytic function in D. For analytic functions the Cauchy theorem is
valid [5].

Theorem 2 (Cauchy theorem) Let γ be a simple closed smooth curve and D be the
inner domain, bounded by γ. If w is analytic function in D, continuous in D, then∫

γ

w(z)dz = 0

holds.

The following representation of an analytic function can be obtained from the
Cauchy theorem

w(z) =
1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
, z ∈ D.

One can deduced from the Gauss theorem the following representation formulas:
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Theorem 3 (Cauchy- Pompeiu representations) [3] Let D be a regular do-
main of C, w ∈ C1(D;C) ∩ C(D,C), ζ = ξ + iη. Then

(3) w(z) =
1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
− 1

π

∫
D

wζ(ζ)
dξdη

ζ − z

and

(4) w(z) = − 1

2πi

∫
∂D

w(ζ)
dζ

ζ − z
− 1

π

∫
D

wζ(ζ)
dξdη

ζ − z

hold for all z ∈ D.

3 The Dirichlet Boundary Value Problems

Theorem 4 [1] The Dirichlet problem in the unit disc

gz + cgz = f, g|∂D = γ

for f ∈ Lp(D), p > 2, and γ ∈ C(∂D;C) is solvable iff

1

2πi

∫
|ζ|=1

γ(ζ)
2 + czζ

1 + czζ

z̄

1− zζ
dζ(5)

=
∞∑
k=0

(−1)kck
1

π

∫
|ζ|<1

f(ζ)(ζ − z)k z̄k+1

(1− zζ)k+1
dξdη,

and the solution is

(6) g(z) =
1

2πi

∫
|ζ|=1

γ(ζ)
dζ

ζ − z − c(ζ − z)
− 1

π

∫
|ζ|<1

f(ζ)
dξdη

ζ − z − c(ζ − z)
.

Remark 1 (5) solvability condition can be written as

1

2πi

∫
|ζ|=1

γ(ζ)
2 + czζ

1 + czζ

z̄

1− zζ
dζ =

z̄

π

∫
|ζ|<1

f(ζ)

1− zζ + cz̄(ζ − z)
dξdη.

Theorem 5 [4] The Dirichlet problem for the inhomogeneous polyanalytic equation
in the unit disc

∂n−1
z w = g(z) in D, ∂kzw|∂D = γk on ∂D, 0 ≤ k ≤ n− 2,
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is uniquely solvable for g ∈ L1(D;C), γk ∈ C(∂D,C), 0 ≤ k ≤ n − 2 if and only if
for 0 ≤ k ≤ n− 2

n−2∑
λ=k

z̄

2πi

∫
|ζ|=1

(−1)λ−k
γλ(ζ)

1− zζ
(ζ − z)λ−k

(λ− k)!
dζ(7)

+
(−1)n−k−1

π
z̄

∫
|ζ|<1

g(ζ)

1− zζ
(ζ − z)n−k−2

(n− k − 2)!
dξdη = 0

and the solution then is

w(z) =
n−2∑
k=0

(−1)k

2πi

1

k!

∫
|ζ|=1

γk(ζ)
(ζ − z)k

ζ − z
dζ(8)

+
(−1)n−1

π

1

(n− 2)!

∫
|ζ|<1

g(ζ)
(ζ − z)n−2

ζ − z
dξdη.

4 Main Results

In (1), introducing the new function

(9) ∂n−1
z w = g, g ∈ L1(D;C),

the boundary problem is reduced to the following Dirichlet problem

(10) gz̄ + cgz = f ; f ∈ Lp(D,C), p > 2

(11) g|∂D = γn−1

which is Dirichlet boundary value problem for the Beltrami equation.

If g(z) is plugged into in (1), we come across

(12) ∂n−1
z w = g(z), g ∈ L1(D;C)

(13) ∂kzw|∂D = γk, 0 ≤ k ≤ n− 2, γk ∈ C(∂D,C)

Dirichlet boundary value problem.
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So, theorems in previous section will apply. By rewriting g(ζ) in (7), and chang-
ing order integration, we can get

n−2∑
λ=k

z̄

2πi

∫
|ζ|=1

(−1)λ−k
γλ(ζ)

1− zζ
(ζ − z)λ−k

(λ− k)!
dζ(14)

+
(−1)n−k−1

2πi
z̄

∫
|t|=1

γn−1(t)
1

π

∫
|ζ|<1

(ζ − z)n−k−2

(n− k − 2)!(1− zζ)

dξdη

t− ζ
dt

+
(−1)n−k−1

2πi
z̄

∫
|t|=1

γn−1(t)
1

π

∫
|ζ|<1

(ζ − z)n−k−2

(n− k − 2)!

c(t− ζ)

t− ζ − c(t− ζ)

dξdη

(1− zζ)
dt

−(−1)n−k−1

π
z̄

∫
|t|<1

f(t)
1

π

∫
|ζ|<1

(ζ − z)n−k−2

(n− k − 2)!

1

t− ζ − c(t− ζ)

dξdη

1− zζ
dt1dt2

= 0.

Evaluting with Cauchy-Pompeiu representations for second term of (14), one can
get

1

π

∫
|ζ|<1

(ζ − z)n−k−2

(n− k − 2)!(1− zζ)

dξdη

t− ζ
(15)

=
(t− z)n−k−1

(n− k − 1)!(1− zt)
− 1

2πi

∫
|ζ|=1

(ζ − z)n−k−1

(n− k − 1)!(1− zζ)

dζ

ζ − t
.

Hence

1

2πi

∫
|ζ|=1

(ζ − z)n−k−1

(1− zζ)

dζ

ζ − t
= − 1

2πi

∫
|ζ|=1

(ζ − z)n−k−1

(ζ − z)
dζ

1− tζ

= − 1

2πi

∫
|ζ|=1

(ζ − z)n−k−2

(1− tζ)
dζ = 0,

we get

1

π

∫
|ζ|<1

(ζ − z)n−k−2

(n− k − 2)!(1− zζ)

dξdη

t− ζ
=

(t− z)n−k−1

(n− k − 1)!(1− zt)
.

And similarly, the other term of (14) can be simplified that

1

π

∫
|ζ|<1

(ζ − z)n−k−2

(n− k − 2)!

c(t− ζ)

t− ζ − c(t− ζ)

dξdη

(1− zζ)

=

∞∑
r=1

(−1)r−1cr

(n− k − 2)!

(z̄)r−1

(1− z̄t)r
r∑

ν=0

(−1)ν
(
r

ν

)
(t− z)n−k+r−1

n− k + ν − 1
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and

− 1

π

∫
|ζ|<1

(ζ − z)n−k−2

(n− k − 2)!

1

t− ζ − c(t− ζ)

dξdη

(1− zζ)

=

∞∑
r=1

(−1)r−1cr

(n− k − 2)!

(z̄)r

(1− z̄t)r+1

r∑
ν=0

(−1)ν+1

(
r

ν

)
(t− z)n−k+r−1

n− k + ν − 1
.

So, the solvability condition (7) can be found as

n−2∑
λ=k

z̄

2πi

∫
|ζ|=1

(−1)λ−k
γk(ζ)

1− zζ
(ζ − z)λ−k

(λ− k)!
dζ

+
(−1)n−k−1

2πi
z̄

∫
|ζ|=1

γn−1(ζ)
(ζ − z)n−k−1

(n− k − 1)!(1− zζ)
dζ

+
(−1)n−k−1

2πi
z̄

∫
|ζ|=1

γn−1(ζ)

∞∑
r=1

(−1)r−1cr

(n− k − 2)!

(z̄)r−1

(1− z̄ζ)r

r∑
ν=0

(−1)ν
(
r

ν

)
(ζ − z)n−k+r−1

n− k + ν − 1
dζ

+
(−1)n−k−1

π
z̄

∫
|ζ|<1

f(ζ)

∞∑
r=1

(−1)r−1cr

(n− k − 2)!

(z̄)r

(1− z̄ζ)r+1

r∑
ν=0

(−1)ν+1

(
r

ν

)
(ζ − z)n−k+r−1

n− k + ν − 1
dξdη

= 0.

For the solution, by inserting g(ζ) into (8) and changing order integration, it gives that

w(z) =

n−2∑
k=0

(−1)k

2πi

∫
|ζ|=1

γk(ζ)

k!

(ζ − z)k

(ζ − z)
dζ

+
(−1)n−1

2πi

∫
|t|=1

γn−1(t)
1

π

∫
|ζ|<1

(ζ − z)n−2

(n− 2)!(ζ − z)
dξdη

t− ζ
dt

+
(−1)n−1

2πi

∫
|t|=1

γn−1(t)
1

π

∫
|ζ|<1

(ζ − z)n−2

(n− 2)!(ζ − z)
c(t− ζ)

t− ζ − c(t− ζ)
dξdηdt

− (−1)n−1

π

∫
|t|<1

f(t)
1

π

∫
|ζ|<1

(ζ − z)n−2

(n− 2)!(ζ − z)
dξdη

t− ζ − c(t− ζ)
dt1dt2.

Observing that



The Dirichlet boundary value problem 45

− 1

π

∫
|ζ|<1

(ζ − z)n−2

(n− 2)!(ζ − z)
dξdη

ζ − t

= − 1

π

∫
|ζ|<1

(ζ − z)n−2

(n− 2)!(t− z)

(
1

ζ − t
− 1

ζ − z

)
dξdη

=
(t− z)n−1

(n− 1)!(t− z)
− 1

2πi(n− 1)!(t− z)
1

π

∫
|ζ|=1

(
(ζ − z)n−1

ζ − t
− (ζ − z)n−1

ζ − z

)
dζ

=
(t− z)n−1

(n− 1)!(t− z)
+

1

2πi(n− 1)!(t− z)
1

π

∫
|ζ|=1

(ζ − z)n−1

(
1

1− tζ
− 1

1− zζ

)
dζ

ζ

=
(t− z)n−1

(n− 1)!(t− z)
,

by some calculations for the other integrals, one can find that

1

π

∫
|ζ|<1

(ζ − z)n−2

(n− 2)!(ζ − z)
c(t− ζ)

t− ζ − c(t− ζ)
dξdη

=
1

(n− 2)!

∞∑
r=1

cr
(t− z)r−1

(t− z)r
r∑

ν=0

(−1)ν

n+ ν − 1

(
r

ν

)

and

− 1

π

∫
|ζ|<1

(ζ − z)n−2

(n− 2)!(ζ − z)
dξdη

t− ζ − c(t− ζ)

=
1

(n− 2)!

∞∑
r=0

cr
(t− z)r−1

(t− z)r+1

r∑
ν=0

(−1)ν

n+ ν − 1

(
r

ν

)
.

Finally, the solution is obtained that
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w(z) =

n−2∑
k=0

(−1)k

2πi

∫
|ζ|=1

γk(ζ)

k!

(ζ − z)k

(ζ − z)
dζ

+
(−1)n−1

2πi

∫
|ζ|=1

γn−1(ζ)
(ζ − z)n−1

(n− 1)!(ζ − z)
dζ

+
(−1)n−1

2πi

∫
|ζ|=1

γn−1(ζ)
1

(n− 2)!

∞∑
r=1

cr
(ζ − z)r−1

(ζ − z)r
r∑

ν=0

(−1)ν

n+ ν − 1

(
r

ν

)
dζ

−(−1)n−1

π

∫
|ζ|<1

f(ζ)
1

(n− 2)!

∞∑
r=1

cr
(ζ − z)r−1

(ζ − z)r+1

r∑
ν=0

(−1)ν

n+ ν − 1

(
r

ν

)
dξdη.

We proved the following theorem:

Theorem 6 In the unit disc D = {z ∈ C : |z| < 1}, the boundary value problem for
|c| < 1

∂nz̄w + c∂z∂
n−1
z w = f(z), f ∈ Lp(D,C), p > 2, n = 1, 2, ...,(16)

∂k−1
z̄ w|∂D = γk, γk ∈ C(∂D;C), 0 ≤ k ≤ n− 1(17)

is solvable, if and only if the functions f, γ satisfy that for all z ∈ D

n−2∑
λ=k

z̄

2πi

∫
|ζ|=1

(−1)λ−k
γk(ζ)

1 − zζ

(ζ − z)λ−k

(λ− k)!
dζ

+
(−1)n−k−1

2πi
z̄

∫
|ζ|=1

γn−1(ζ)
(ζ − z)n−k−1

(n− k − 1)!(1 − zζ)
dζ

+
(−1)n−k−1

2πi
z̄

∫
|ζ|=1

γn−1(ζ)

∞∑
r=1

(−1)r−1cr

(n− k − 2)!

(z̄)r−1

(1 − z̄ζ)r

r∑
ν=0

(−1)ν
(
r

ν

)
(ζ − z)n−k+r−1

n− k + ν − 1
dζ

+
(−1)n−k−1

π
z̄

∫
|ζ|<1

f(ζ)
∞∑
r=1

(−1)r−1cr

(n− k − 2)!

(z̄)r

(1 − z̄ζ)r+1

r∑
ν=0

(−1)ν+1

(
r

ν

)
(ζ − z)n−k+r−1

n− k + ν − 1
dξdη

= 0

and

1

2πi

∫
|ζ|=1

γn−1(ζ)
2 + czζ

1 + czζ

z̄

1− zζ
dζ =

z̄

π

∫
|ζ|<1

f(ζ)

1− zζ + cz̄(ζ − z)
dξdη.
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In this case, the unique solution is

w(z) =
n−2∑
k=0

(−1)k

2πi

∫
|ζ|=1

γk(ζ)

k!

(ζ − z)k

(ζ − z)
dζ

+
(−1)n−1

2πi

∫
|ζ|=1

γn−1(ζ)
(ζ − z)n−1

(n− 1)!(ζ − z)
dζ

+
(−1)n−1

2πi

∫
|ζ|=1

γn−1(ζ)
1

(n− 2)!

∞∑
r=1

cr
(ζ − z)r−1

(ζ − z)r
r∑

ν=0

(−1)ν

n+ ν − 1

(
r

ν

)
dζ

−(−1)n−1

π

∫
|ζ|<1

f(ζ)
1

(n− 2)!

∞∑
r=1

cr
(ζ − z)r−1

(ζ − z)r+1

r∑
ν=0

(−1)ν

n+ ν − 1

(
r

ν

)
dξdη.
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On certain subclasses of analytic functions involving a
linear operator associated with the Fox-Wright Psi

function

V.B.L. Chaurasia, Devendra Kumar

Abstract

The objective of the present paper is to obtain some applications of first
order differential subordinations and superordination results involving a linear
operator associated with the Fox-Wright psi function and other linear operators
for certain normalized analytic functions in the open unit discs.

2010 Mathematics Subject Classification: 30C45.
Key words and phrases: Analytic functions, Differential subordination,

Superordination, Sandwich theorem, Fox-Wright psi function, Linear operator.

1 Introduction

Let H(U) be the class of analytic functions in the unit disk U = { z ∈ C : |z |<
1} and let H [a,k] be the subclass of H (U) consisting of functions presented in the
following manner

(1) f(z) = a + ak z
k + ak+1 z

k+1 + ... (a ∈ C).

Also, let A be the subclass of H(U) involving the functions of the form

(2) f(z) = z +
∞∑
k=2

ak z
k.

If f and g are member of H(U), then the function f is known as subordinant to g,
if there exists a Schwarz function ω, which (by definition) is analytic in U with |ω
(z) |< 1 for all z ∈ U, such that f(z) = g (ω (z)). In such case we write f(z) ≺
g(z). Furthermore, if the function g is univalent in U, then we have the following
equivalence, (cf., e.g. [3], [10] ; see also [11]):

f(z) ≺ g (z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

49
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Suppose p and h are member of H(U) and ϕ(r, s, t; z) : C3×U → C. If p and ϕ (p(z),
zp’(z), z2 p”(z) ; z) are univalent and if p satisfies the second order superordination

(3) h(z) ≺ ϕ( p(z), zp′(z), z
2
p′′(z) ; z),

then p is a solution of the differential superordination (3). Note that if f is sub-
ordinate to g, then g is superordinant to f. An analytic function q is termed a
subordinant if q(z) ≺ p(z) for all p satisfying (3). An univalent subordinate q̃ that
satisfies q ≺ q̃ for all subordinants of (3) is known as the best subordinant. Miller and
Macanu [12] derived conditions on the functions h, p and ϕ for which the following
implication holds:

(4) h(z) ≺ ϕ (p(z), zp′(z), z
2
p′′(z); z) ⇒ q(z) ≺ p(z) .

Ali et al. [1] have found sufficient conditions for certain normalized analytic functions
f(z) to satisfy

(5) q1(z) ≺ z
f

′
(z)

f(z)
≺ q2(z),

where q1 and q2 are given univalent functions in U. Sanmugam et al. [16] derived
sufficient conditions for the normalized analytic function f to satisfy

q1(z) ≺ f(z)

z f
′
(z)

≺ q2(z)

and

q1(z) ≺ z2 f
′
(z)

{f(z)}2
≺ q2(z).

Furthermore, they also obtained results for functions defined with the help of Carlson-
Shaffer operator. The Fox-Wright psi function is defined and represented as follows
[18, p.50]

(6) qψs

[
(αi,Ai)1,q ;

(βi,Bi)1,s ; z
]

= qψs

[
(α1,A1) ,..., (αq , Aq) ;
(β1,B1) ,..., (βs,Bs) ; z

]
=

∞∑
n=0

(
q∏
i=1

Γ(αi +Ain)

) (
s∏
i=1

(βi +Bin

)−1
zn

n !
,

where αi ∈ C (i = 1, ..., q), βi ∈ C (i = 1, ..., s)and the coefficients Ai ∈
R+(i = 1, ..., q) and Bi ∈ R+ (i = 1, ..., s) such that

1 +
s∑
i=1

Bi −
q∑
i=1

Ai ≥ 0 (q, s ∈ N0 = N U {0}).

The normalized Fox-Wright psi function qψ
∗
s(z) in series form is represented as

(7) qψ
∗
s

[
(αi,Ai)1,q ;

(βi,Bi)1,s ; z
]

=

∏s
i=1 Γ(βi)∏q
i=1 Γ(αi)

qψs

[
(α1,A1) ,..., (αq , Aq) ;
(β1,B1) ,..., (βs,Bs) ; z

]
.
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The qψs(z) is a special case of Fox’s H-function Hm,n
k,ℓ (z)(see [18, p.50]) and qψ

∗
s(z)

is a generalization of the familiar generalized hypergeometric function qFs(z),

(8) qFs

[
(αi)1,q ;

(βi)1,s ; z
]

= qFs

[
(α1) ,..., (αq) ;
(β1) ,..., (βs) ; z

]
=

∞∑
n=0

(α1)n ... (αq)n
(β1)n ... (βs)n

zn

n !
,

where (α)n is the Pochhammer symbol defined in terms of the gamma function Γ
by

(α)n =
Γ(α+ n)

Γ(α)
.

Corresponding to a function L (α1, ..., αq;A1, ..., Aq; β1, ..., βs; B1, ..., Bs; z) defined
by

(9) L (α1, ..., αq; A1, ...,Aq; β1, ..., βs; B1, ...,Bs; z) = z qψ
∗
s (z).

We consider a linear operator

Lq,s(α1, ..., αq; A1, ..., Aq; β1, ..., βs; B1, ..., Bs) : A → A

defined by the convolution

(10) Lq,s(α1, ..., αq; A1, ..., Aq; β1, ..., βs; B1, ..., Bs) f(z)

= L (α1, ..., αq; A1, ..., Aq; β1, ..., βs; B1, ..., Bs; z) ∗ f(z).

For brevity, we write

(11) Lq,s(α1) = Lq,s(α1, ..., αq; A1, ..., Aq; β1, ..., βs; B1, ..., Bs),

then one can easily verify from the definition (10) that

(12) z (A1Lq,s(α1) f(z))
′
= α1Lq,s(α1 + 1) f(z)

− (α1 −A1) Lq,s(α1) f(z).

Special cases of the operator Lq,s(α1) f(z) includes Dziok-Srivastava linear operator
(cf. [8]), the Carlson-Shaffer linear operator [5], the Cho-Kwon-Srivastava operator
[6], Choi-Saigo-Srivastava operator [7], Libera operator [9] and the δ−Ruschewey
derivative operator [13].

In this paper, we obtain sufficient conditions for the normalized analytic function
f defined by using the linear operator Lq,s(α1)f(z)to satisfy

q1(z) ≺
(

z

Lq,s(α1) f(z)

)µ
≺ q2(z)

and q1 and q2 are given univalent functions in U.
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2 Definitions and Preliminaries

In order to prove our main results, we require the following known results.
Definition 1 [12]. Denote Q the set of all functions f that are analytic and injective
on Ū\E(f), where E(f) is given by

E (f) = { ξ ∈ ∂U : lim
z → ξ

f(z) = ∞},

and are such that f
′
(ξ) ̸= 0 for ξ ∈ ∂U\E(f).

Lemma 1 [11]. Assume that q be univalent in the unit disk U and θ and ϕ be
analytic in a domain D containing q(U) with ϕ(ω) ̸= 0 when ω ∈ q(U). Set

(13) ψ(z) = z q
′
(z) ϕ (q(z)) and h(z) = θ (q(z)) + ψ(z) .

Suppose that
(i) ψ(z)is starlike univalent in U.

(ii) Re

{
z h

′
(z)

ψ(z)

}
> 0 for z ∈ U.

If p is analytic with p(0) = q(0), p(U) ⊆ D and

(14) θ (p(z)) + z p
′
(z) ϕ (p(z)) ≺ θ (q(z)) + z q

′
(z) ϕ (q(z)),

then p(z) ≺ q(z) and q is the best dominant.
Lemma 2 [2]. If q be convex univalent in U and v and ϕ be analytic in a domain
D containing q(U). Suppose that:

(i) Re {v
′
(q(z))/ϕ(q(z))} > 0 for z ∈ U,

(ii) Q(z) = z q
′
(z) ϕ(z)is starlike univalent in U.

If p(z) ∈ H [q(0),1]
∩

Q with p(U) ⊆ D, and v(p(z)) + zp′(z) is univalent in U and

(15) v(q(z)) + z q
′
(z) ϕ (q(z)) ≺ v (q(z)) + zp

′
(z) ϕ (p(z)),

then q(z) ≺ p(z) and q is the best subordinant.

3 Application to linear operator associated with the
Fox-Wright psi function

Unless otherwise stated, we shall assume the reminder of this paper that γ, ξ, δ ∈
C and β, µ ∈ C* = C\{0}.
Theorem 1. If q be analytic univalent in U with q(z) ̸= 0. Suppose that z q

′
(z)

q(z) is

starlike univalent in U. Let γ, ξ, δ ∈ C; β, µ ∈ C* satisfy:

(16) Re

{
1 +

ξ

β
q(z) +

2δ

β
(q(z))2 − z q

′
(z)

q(z)
+
z q

′ ′
(z)

q′(z)

}
> 0,
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and

(17) ψ (α1, γ, ξ, δ, β, µ, f) = γ + ξ

(
z

Lq,s(α1) f(z)

)µ

+ δ

(
z

Lq,s(α1)f(z)

)2µ

+
βµα1

A1

[
1− Lq,s(α1 + 1) f(z)

Lq,s(α1) f(z)

]
.

If q satisfies the following subordination:

(18) ψ(α1, γ, ξ, δ, β, µ, f) ≺ γ + ξ q(z) + δ (q(z))2 + βz
q
′
(z)

q(z)
,

then

(19)

(
z

Lq,s(α1) f(z)

)µ
≺ q(z) (µ ∈ C∗)

and q is the best dominant.
Proof. Let us define a function p as follows

(20) p(z) =

(
z

Lq,s(α1) f(z)

)µ
(z ∈ U ; µ ∈ C∗).

Then the function p is analytic in U and p(0) = 1. So, on differentiating (20)
logarithmically with respect to z and using the identity (12) in the resulting equation,
we get the following result

(21) γ + ξ

(
z

Lq,s(α1)f(z)

)µ
+ δ

(
z

Lq,s(α1)f(z)

)2µ

+
βµα1

A1

[
1− Lq,s(α1 + 1) f(z)

Lq,s(α1) f(z)

]
= γ + ξ p(z) + δ (p(z))2 + β z

p
′
(z)

p(z)
.

Now using the results (21) and (18), we have

(22) γ + ξ p(z) + δ(p(z))2 + β
zp

′
(z)

p(z)
≺ γ + ξ q(z) + δ(q(z))2 + βz

q
′
(z)

q(z)

Setting θ(ω) = γ + ξω + δω2and ϕ(ω) = β
ω , it can be easily observed that θ is

analytic in C, ϕ is analytic in C* and ϕ(ω) ̸= 0 (ω ∈ C*). Hence, the result now
follows by using Lemma 1.

Putting q(z) = (1+Az)/(1+Bz) (−1 ≤ B < A ≤1) in Theorem 1, we get the
following result presented in the form of corollary.
Corollary 1. Let −1 ≤ B < A ≤ 1 and

Re

{
1 +

ξ

β

(
1 +Az

1 +Bz

)
+

2δ

β

(
1 +Az

1 +Bz

)2

− (A+B + 3AB)

(1 +Az) (1 +Bz)

}
> 0
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holds. If f(z) ∈ A, and

γ + ξ

(
z

Lq,s(α1)f(z)

)µ
+ δ

(
z

Lq,s(α1)f(z)

)2µ

+
βµα1

A1

[
1− Lq,s(α1 + 1) f(z)

Lq,s(α1) f(z)

]

≺ γ + ξ

(
1 +Az

1 +Bz

)
+ δ

(
1 +Az

1 +Bz

)2

+ β
(A−B)z

(1 +Az) (1 +Bz)
,

then (
z

Lq,s(α1)f(z)

)µ
≺ 1 +Az

1 +Bz
(µ ∈ C∗)

and 1+Az
1+Bz is the best dominant.

Putting q(z) =
(
1+z
1−z

)ν
(0 < ν ≤ 1) in Theorem 1, we obtain the following

interesting result given in the form of corollary
Corollary 2. Assume that (16) holds. If f ∈ A, and

γ + ξ

(
z

Lq,s(α1)f(z)

)µ
+ δ

(
z

Lq,s(α1)f(z)

)2µ

+
βµα1

A1

[
1− Lq,s(α1 + 1) f(z)

Lq,s(α1) f(z)

]

≺ γ + ξ

(
1 + z

1− z

)ν
+ δ

(
1 + z

1− z

)2ν

+
β2νz

(1− z)2
,

then (
z

Lq,s(α1)f(z)

)µ
≺
(
1 + z

1− z

)ν
(µ ∈ C∗, 0 < ν ≤ 1 )

and
(
1+z
1−z

)ν
is the best dominant.

Taking Ai = 1( i = 1,. . . ,q) and Bi = 1 (i = 1,. . . ,s) in Theorem 1, we have the
following Corollary which is the same result recently obtained by Mostafa [13].

Corollary 3. Let q be analytic univalent in U with q(z) ̸= 0. Suppose that z q
′
(z)

q(z)

is starlike univalent in U. Let γ, ξ, δ ∈ C; β, µ ∈ C* satisfy:

Re

{
1 +

ξ

β
q(z) +

2δ

β
(q(z))2 − z q

′
(z)

q(z)
+
z q

′ ′
(z)

q′(z)

}
> 0,

and

(23) ζ(α1, γ, ξ, δ, β, µ, f) = γ + ξ

(
z

Hq,s(α1)f(z)

)µ

+ δ

(
z

Hq,s(α1)f(z)

)2µ

+ βµα1

[
1− Hq,s(α1 + 1)f(z)

Hq,s(α1) f(z)

]
.

If q satisfies the following subordination

ζ(α1, γ, ξ, δ, β, µ, f) ≺ γ + ξ q(z) + δ (q(z))2 + β z
q
′
(z)

q(z)
,
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then (
z

Hq,s(α1) f(z)

)µ
≺ q (z) (µ ∈ C∗)

and q is best dominant.
Taking Ai = 1 (i = 1,. . . ,q), Bi = 1 (i = 1,. . . ,s), α1 = a > 0, β1 = c > 0, αj = 1 (j
= 2,. . . ,q) and βj = 1 (j = 2,. . . ,s) in Theorem 1, we have the following Corollary
which improves the result obtained by Shanmugam et al. [15, Theorem 3.1].
Corollary 4. Let q be analytic univalent in U with q(z) ̸= 0 and condition (16)

holds. Suppose also that z q
′
(z)

q(z) is starlike univalent in U and

(24) V (γ, ξ, δ, β, µ) = γ + ξ

(
z

L(a, c)f(z)

)µ
+ δ

(
z

L(a, c) f(z)

)2µ

+βµa

[
1− L(a+ 1, c)

L(a, c) f(z)

]
.

If q satisfies the following subordination

V (γ, ξ, δ, β, µ) ≺ γ + ξ q(z) + δ(q(z))2 + βz
q
′
(z)

q(z)
,

then (
z

L(a, c) f(z)

)µ
≺ q(z) (µ ∈ C∗)

and q is the best dominant.

Theorem 2. If q be convex univalent in U, q(z) ̸= 0 and z q
′
(z)

qz be starlike
univalent in U. Assume that

(25) Re

{
2δ

β
(q(z))2 +

ξ

β
q(z)

}
> 0 (z ∈ U).

If f ∈ A, 0 ̸=
(

z
Lq,s(α1)f(z)

)µ
∈ H [q(0), 1]

∩
Q,ψ(α1, γ, ξ, δ, β, µ, f)is univa-

lent in U, and γ + ξ q(z) + δ (q(z))2 + β z q
′
(z)

q(z) ≺ ψ(α1, γ, ξ, δ, β, µ, f), where

ψ(α1, γ, ξ, δ, β, µ, f) is given by (17), then

(26) q(z) ≺
(

z

Lq,s(α1) f(z)

)µ
(µ ∈ C∗)

and q is the best subordinant.
Proof. Taking

v(ω) = γ + ξω + δω2 and ϕ(ω) =
β

ω
,

it is easily observed that v is analytic in C, ϕ is analytic in C* and ϕ(ω) ̸= 0 (ω ∈
C*). Since q is convex (univalent) function it follows that

Re

{
v
′
(q(z))

ϕ (q(z))

}
= Re

{
2δ

β
(q(z))2 +

ξ

β
q(z)

}
q
′
(z) > 0 (z ∈ U).
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Thus the assertion (26) of Theorem 2 follows by an application of Lemma 2.
Taking Ai = 1 (i = 1, ..., q) and Bi = 1 (i = 1, ..., s) in Theorem 2, we have the
following corollary which is the same result recently obtained by Mostafa [13].

Corollary 5. Let q be convex univalent in U, q(z) ̸= 0 and z q
′
(z)

qz be starlike uni-

valent in U. Assume that (25) holds. If f ∈ A, 0 ̸=
(

z
Hq,s(α1)f(z)

)µ
∈ H[q(0), 1]

∩
Q,

ζ (α1, γ, ξ, δ, β, µ, f),is univalent in U, and

γ + ξ q(z) + δ (q(z))2 + β z q
′
(z)

q(z) ≺ ζ(α1, γ, ξ, δ, β, µ, f),

where ζ(α1, γ, ξ, δ, β, µ, f) is given by (23), then

q(z) ≺
(

z

Hq,s(α1) f(z)

)µ
(µ ∈ C∗)

and q is the best subordinant.
Taking Ai = 1 (i = 1,. . . ,q), Bi = 1 (i = 1,. . . ,s), α1 = a > 0, β1 = c > 0, αj = 1
(j = 2,. . . ,q) and βj = 1 (j = 2,. . . ,s) in Theorem 2, we have the following corollary
which improves the result of Shanmugam et al. [15, Theorem 3.6].

Corollary 6. Let q be convex univalent in U, q(z) ̸= 0 and z q
′
(z)

qz be starlike uni-

valent in U. Assume that (25) holds. If f ∈ A, 0 ̸=
(

z
L(a,c)f(z)

)µ
∈ H [q(0), 1]

∩
Q,

V (γ, ξ, δ, β, µ) is univalent in U and

γ+ ξ q(z) + δ (q(z))2 + β z q
′
(z)

q(z) ≺ V (γ, ξ, δ, β, µ), where V (γ, ξ, δ, β, µ) is given by

(24) then

q(z) ≺
(

z

L(a, c) f(z)

)µ
(µ ∈ C∗)

and q is the best subordinant.

4 Sandwich result

On combining the Theorems 1 and 2, we get the following theorem.
Theorem 3. Let q1 be convex univalent in U and q2 be univalent in U, q1(z) ̸= 0
and q2(z) ̸= 0 in U. Suppose that q2 and q1 satisfy (16) and (25), respectively.

If f ∈ A, 0 ̸=
(

z
Lq,s(α1)f(z)

)µ
∈ H [q(0), 1]

∩
Q and

γ + ξ
(

z
Lq,s(α1)f(z)

)µ
+ δ

(
z

Lq,s(α1)f(z)

)2µ
+ βµα1

A1

[
1− Lq,s(α1+1)f(z)

Lq,s(α1)f(z)

]
is univalent in

U. Then

γ + ξ q1(z) + δ (q1(z))
2 + β z

q
′
1(z)

q1(z)

≺ γ + ξ

(
z

Lq,s(α1)f(z)

)µ
+ δ

(
z

Lq,s(α1)f(z)

)2µ

+
βµα1

A1

[
1− Lq,s(α1 + 1)f(z)

Lq,s(α1)f(z)

]

≺ γ + ξ q2(z) + δ (q2(z))
2 + β z

q
′
2(z)

q2(z)
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implies that

q1(z) ≺
(

z

Lq,s(α1) f(z)

)µ
≺ q2(z) (µ ∈ C∗)

and q1 and q2 are, respectively, the best subordinant and the best dominant.

5 Conclusions

In the present article, we have obtained the subordination and superordination re-
sults involving a linear operator associated with the Fox-Wright psi function for a
family of analytic univalent functions in the open unit disk. Further, these results
have been applied to obtain sandwich results. It is interesting to note that the
subordination and superordination results contain a linear operator associated with
the Fox-Wright psi function, which is the most generalized operator. Finally, we
mentioned that the results obtained in the present work provide an extension of the
results available in the literature and improve the existing results.
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About on equality

Ioan Ţincu

Abstract

In this paper is given an equality for Bernstein polynomial.

2010 Mathematics Subject Classification: 26C05,12E10.
Key words and phrases: Taylor polynomial, Bernstein.

1 Introduction

Let Πn(R) the set of all polynomials on degree at the most n with real coefficients
and the polynomial Taylor

(Tnf)(x) =

∞∑
k=0

xk

k!
f (k)(0), f ∈ Πn(R) ([ 3]).

2 Principal results

Since f ∈ Πn(R), it follows

f(x) = (Tnf)(x) =

n∑
k=0

f (k)(0)

k!
xk · 1n−k

=

n∑
k=0

f (k)(0)

k!
xk ·

n−k∑
j=0

(
n− k

j

)
xj · (1− x)n−k−j

=

n∑
k=0

f (k)(0)

k!
xk ·

n∑
j=k

(
n− k

j − k

)
xj−k · (1− x)n−j

=

n∑
k=0

f (k)(0)

k!

n∑
j=k

(
n− k

j − k

)
xj · (1− x)n−j
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=

n∑
k=0

f (k)(0)

k!

n∑
j=k

(
n−k
j−k
)(

n
j

) ·
(
n

j

)
xj · (1− x)n−j .

Denote bj,k =

(
n−k
j−k
)(

n
j

) , cj =

(
n

j

)
xj · (1− x)n−j , ak =

f (k)(0)

k!
.

Propertie 1 For ak, cj , bk,j ∈ R, k, j ∈ {0, 1, ..., n}, we have

(1)

n∑
k=0

ak

n∑
j=k

bj,kcj =

n∑
k=0

ck

k∑
j=0

bk,jaj .

Proof. We can write
n∑
k=0

ak

n∑
j=k

bj,kcja0

n∑
j=0

bj,0cj

+a1

n∑
j=1

bj,1cj + a2

n∑
j=2

bj,2cj + ...+ an

n∑
j=n

bj,ncj

= a0(b0,0c0 + b1,0c1 + b2,0c2 + ...+ bn,0cn) + a1(b1,1c1 + b2,1c2 + ...+ bn,1cn)

+a2(b2,2c2 + b3,2c3 + ...+ bn,2cn) + ...+ anbn,ncn

= c0 · a0b0,0 + c1(a0b1,0 + a1b1,1) + c2(a0b2,0 + a1b2,1 + a2b2,2) + ...

+cn(a0bn,0 + a1bn,1 + a2bn,2 + ...+ anbn,n) =

n∑
k=0

ck

k∑
j=0

ajbj,k.

We obtain

f(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−k

k∑
j=0

f (j)(0)

j!
·
(
n−j
k−j
)(

n
k

)
=

n∑
k=0

(
n

k

)
xk(1− x)n−k

k∑
j=0

f (j)(0)

j!
·

k!
(k−j)!
n!

(n−j)!

=

n∑
k=0

(
n

k

)
xk(1− x)n−k

k∑
j=0

f (j)(0)

j!
· k(k − 1)...(k − j + 1)

n(n− 1)...(n− j + 1)

=
n∑
k=0

(
n

k

)
xk(1− x)n−k

k∑
j=0

f (j)(0)

j!
· (−k)(−k + 1)...(−k + j − 1)

(−n)(−n+ 1)...(−n+ j − 1)

=

n∑
k=0

(
n

k

)
xk(1− x)n−k

k∑
j=0

f (j)(0)

j!
· (−k)j
(−n)j

,

where
(z)m = z(z + 1)...(z +m− 1), (z)0 = 1.
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Denote sn,k(f) =

k∑
j=0

f (j)(0)

j!
· (−k)j
(−n)j

.We consider the linear operator: Qn : Πn →

Πn, define by

(Qnf)(x) =
n∑
j=0

(−nx)j
(−n)j

· f
(j)(0)

j!
.

We observe

sn,k(f) = (Qnf)

(
k

n

)
.

Therefore

f(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−k · (Qnf)

(
k

n

)
,

f(x) = (Bn(Qnf))(x),

where

(Bnf)(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
,

is Bernstein polynomial ([1], [2]).

For f(x) = xl, l ∈ {0, 1, ..., n} we obtain

(Qnf)(x) =
n∑
j=0

(−nx)j
(−n)j

· l(l − 1)...(l − j + 1)

j!
tl−j |t=0=

(−nx)l
(−n)l

,

xl = (Bn(Qnf))(f), l ∈ {0, 1, 2, ..., n}.

Particular cases:

1) l = 0 ⇒ 1 = (Bng)(x), g(x) = 1.

2) l = 1 ⇒ x = (Bng)(x), g(x) = x.

3) l = 2 ⇒ x2 = (Bng)(x), g(x) =
x(nx− 1)

n− 1
.

4) l = 3 ⇒ x3 = (Bng)(x), g(x) =
x(nx− 1)(nx− 2)

(n− 1)(n− 2)
.
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Subclasses of p-valent meromorphic functions defined
by linear operator

R. M. EL-Ashwah, M. E. Drbuk

Abstract

In this paper, we introduce and investigate some properties of the class

Ms,λ
d (p;β,A,B) and its subclass M

+s,λ
d (p;β,A,B) of meromorphic p-valent

functions with positive coefficients, which are defined by linear operator. In par-
ticular, some inclusion relations, coefficients estimates, distortion theos, radii of
meromorphically p-valent, neighborhoods, partial sums and Hadamard product
are proven here for these functions classes.

2010 Mathematics Subject Classification: 30C45.

Key words and phrases: p-Valent meromorphic functions, starlike functions,
linear operator, neighborhoods, partial sums, Hadamard product.

1 Introduction

Let Σp denote the class of functions of the form

(1) f(z) = z−p +

∞∑
n=1

an−pz
n−p (p ∈ N = {1, 2, ...}) ,

which are analytic and p-valent in the punctured unit disc U∗ = {z : z ∈ C and
0 < |z| < 1} = U\{0}.

A function f ∈ Σp is said to be meromorphically p-valent reverse starlike of order
α if it satisfies

−Re
{
f(z)

zf ′(z)

}
> α (0 ≤ α <

1

p
).

Recently, more and more researchers are interested in the reciprocal case of the
starlike functions (see [10], [20], [26], [15], [16], [25]).
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For two functions fj(z) ∈ Σp(j = 1, 2) are given by

fj(z) =
1

zp
+

∞∑
n=1

an−p,jz
n−p.

Hadamard product (or convolution) of f1(z) and f2(z) in Σp is given by

(f1 ∗ f2) (z) =
1

zp
+

∞∑
n=1

an−p,1an−p,2z
n−p = (f2 ∗ f1) (z).

For two functions f(z) and F (z), analytic in U, we say that f(z) is subordinate to
F (z), written symbolically as follows:

f ≺ F in U or f(z) ≺ F (z) (z ∈ U),

if there exists a Schwarz function ω(z) ∈ Ω, which (by definition) is analytic in U
with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that
f(z) = F (ω(z)) (z ∈ U).

Indeed it is known that

f(z) ≺ F (z)(z ∈ U) =⇒ f(0) = F (0) and f(U) ⊂ F (U).

In particular, if the function F (z) is univalent in U, we have the following equivalence

f(z) ≺ F (z)(z ∈ U) ⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).

El-Ashwah and Bulboaca [6] defined the linear operator:

Ls
p,d

(z) =
1

zp
+

∞∑
n=1

(
d

n+ d

)s
zn−p

(s ∈ C; d ∈ C∗ = C\{0,−1,−2, ...}; z ∈ U∗)

by setting

J s
p,d

(z) =
1

zp
+

∞∑
n=1

(
n+ d

d

)s
zn−p

and (
J s,λ

p,d
∗ J s

p,d

)
(z) =

1

zp (1− z)λ
(λ > 0) ,

we, obtain the linear operator

J s,λ
p,d

(z) =
1

zp
+

∞∑
n=1

(
d

n+ d

)s (λ)n
(1)n

zn−p,
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which is defined by

(2) J s,λ
p,d
f (z) =

1

zp
+

∞∑
n=1

(
d

n+ d

)s (λ)n
(1)n

an−pz
n−p.

(λ > 0, s ∈ C; d ∈ C∗; z ∈ U∗),

where f ∈ Σp is in the form (1) and (ν)n denotes the Pochhammer symbol given by

(ν)n =
Γ(ν + n)

Γ(ν)
=

{
1 (n = 0)
ν(ν + 1)...(ν + n− 1) (n ∈ N) .

It is readily verified from (2) that

(3) z(J s,λ
p,d
f(z))

′
= λJ s,λ+1

p,d
f(z)− (λ+ p)J s,λ

p,d
f(z) (λ > 0)

and

(4) z(J s+1,λ
p,d

f(z))
′
= dJ s,λ

p,d
f(z)− (d+ p)J s+1,λ

p,d
f(z).

Remark 1 (i) J s,1
1,d
f (z) = Pαβ f(z) (α, β > 0) (see Lashin [12]);

(ii) J s,1
p,1
f (z) = Pαf(z) (α > 0) (see Aqlan et al. [5]);

(iii) J 1,1
1,v f (z) = Fvf(z) (v > 0) (see [[17], p.11 and 389]);

(iv) J s,λ
1,d
f(z) = J s,λ

d
f(z) (see [6]);

(v) J −1,1
1,d

f(z) = Fs
d(a, c; z)f(z) (see El-Ashwah [7]);

(vi) J s,1
1,d
f(z) = Lsdf(z)f(z) (see El-Ashwah [8]).

By using the linear operator defined by (2), we define a new subclassMs,λ
d (p;β,A,B)

of Σp as follows: For pβ > 1,−1 ≤ B < A ≤ 1, v

(5)
p

1− pβ

 J s,λ
p,d
f (z)

z
(
J s,λ

p,d f (z)
)′ + β

 ≺ −1 +Az

1 +Bz

which is equivalent to

(6)
z
(
J s,λ

p,d
f (z)

)′
pJ s,λ

p,d f (z)
≺ − 1 +Bz

1 + [A− pβ(A−B)]z

or equivalently, the following inequality holds true

(7)

∣∣∣∣∣∣∣−
pJ s,λ

p,d
f(z)+z

(
J s,λ
p,d

f(z)
)′

B[pJ s,λ
p,d f(z)+z

(
J s,λ
p,d f(z)

)′
]+(1−pβ)(A−B)z

(
J s,λ
p,d f(z)

)′

∣∣∣∣∣∣∣<1
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Remark 2 (i) Putting s=0,λ = 1, A = 1 − 2α(0 ≤ α < 1
p), B = −1,J s,λ

p,d
f (z) =

f(z), if f ∈ M0,1
d (p;β, 1− 2α,−1), we have

p

1− pβ

(
f (z)

zf ′ (z)
+ β

)
≺ −1 + (1− 2α) z

1− z
,

which is equivalent to
p

1− pβ
Re

(
f (z)

zf ′ (z)
+ β

)
> α;

(ii) Putting p = 1, we have

1

1− β
Re

(
f (z)

zf ′ (z)
+ β

)
> α.

Also, we say that a function f ∈ Ms,λ
d (p;β,A,B) is in the analogous class

M
+s,λ
d (p;β,A,B) whenever f(z) is given by

(8) f(z) = z−p +
∞∑
n=p

|an| zn (p ∈ N)

Inclusion Properties of The Class Ms,λ
d (p;β,A,B)

We need the following lema which is popularly known as Jack’s lema to prove
our theorem.

Lemma 1 [9]. Let ω(z) be a non-constant function analytic in U with ω(0) = 0.
If |ω(z)| attains its maximum value on the circle |z| = r < 1 at z0 ∈ U , then

z0ω
′
(z0) = γω(z0) ,

where γ ≥ 1 is a real number.

Theorem 1 If

λ ≥ p(A−B)(pβ − 1)

1 + [A− pβ(A−B)]
(− 1 ≤ B < A ≤ 1;

1

p
< β <

1 +A

p(A−B)
; p ∈ N),

then
Ms,λ+1

d (p;β,A,B) ⊂ Ms,λ
d (p;β,A,B).

Proof. Let f ∈ Ms,λ+1
d (p;β,A,B) and suppose that

(9)
p

1− pβ

 J s,λ
p,d
f (z)

z
(
J s,λ

p,d f (z)
)′ + β

 = −1 +Aω(z)

1 +Bω(z)
,

where the function ω(z) is either analytic or meromorphic in U with ω(0) = 0.
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Then, by using (3) and (9), we have

(10)
λJ s,λ+1

p,d
f(z)

J s,λ
p,d f (z)

=
λ+ {(λ+ p)[A− pβ(A−B)]−Bp}ω(z)

1 + [A− pβ(A−B)]ω(z)
.

Differentiating (10) logarithmically with respect to z and making use of (6) once
again, we obtain

z
(
J s,λ+1

p,d
f(z)

)′
J s,λ+1

p,d f(z)
= p(A−B)(1−pβ)zω′(z)

(λ+{(λ+p)[A−pβ(A−B)]−Bp}ω(z))(1+[A−pβ(A−B)]ω(z))

(11) − p(1 +Bω(z))

1 + [A− pβ(A−B)]ω(z)

Now, assuming that

(12) max
|z|≤|z0|

|ω(z)| = |ω(z0)| = 1 (z0 ∈ U)

and applying Jack’s lema, we have

(13) z0ω
′
(z0) = γω(z0) (γ ≥ 1) .

If we set ω(z0) = eiθ (0 ≤ θ < 2π) in (11), we have∣∣∣∣∣∣∣−
pJ s,λ+1

p,d
f (z0) + z0

(
J s,λ+1

p,d
f (z0)

)′
B[pJ s,λ+1

p,d f (z0) + z0

(
J s,λ+1

p,d f (z0)
)′
] + (1− pβ)(A−B)z0

(
J s,λ+1

p,d f (z0)
)′
∣∣∣∣∣∣∣
2

− 1

=

∣∣∣∣(γ + λ) + {(λ+ p)[A− pβ(A−B)]−Bp}eiθ

λ+ {[A− pβ(A−B)](λ+ p− γ)−Bp}eiθ

∣∣∣∣2 − 1

=
γ2 + 2λγ + γ{(2λ+ 2p− γ)M − 2Bp}+ 2γ((2λ+ p)M −Bp) cos θ

|λ+ {M(λ+ p− γ)−Bp}eiθ|2
,

where M = A− pβ(A−B).
Set

(14) g(t) = γ2 + 2λγ + γ{(2λ+ 2p− γ)M − 2Bp}+ 2γ((2λ+ p)M −Bp)t

Then
g(1) = γ(1 +M){2λ(1 +M) + γ(1−M)− 2p(B −M)} > 0

and
g(−1) = γ(1−M){2λ(1−M) + γ(1 +M) + 2p(B −M)} > 0,
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which, together, imply that

(15) g(cos θ) ≥ 0 (0 ≤ θ < 2π).

In view of (14) and (15), it would obviously contradict our hypothesis that

f ∈ Ms,λ+1
d (p;β,A,B).

Thus we must have
|ω(z)| < 1 (z ∈ U),

and we conclude from (9) that

f ∈ Ms,λ
d (p;β,A,B),

which evidently completes the proof of Theorem 1.

Theorem 2 If

Re (d) ≥ p(A−B)(pβ − 1)

1 + [A− pβ(A−B)]
(− 1 ≤ B < A ≤ 1;

1

p
< β <

1 +A

p(A−B)
; p ∈ N),

then
Ms,λ

d (p;β,A,B) ⊂ Ms+1,λ
d (p;β,A,B).

Proof. Making use of (4), the proof of Theorem 2 is similar to that of Theorem 1,
so it is omitted.

Theorem 3 Let δ ∈ C such that

Re(δ) ≥ p(A−B)(pβ − 1)

1 + [A− pβ(A−B)]
(− 1 ≤ B < A ≤ 1;

1

p
< β <

1 +A

p(A−B)
; p ∈ N).

If f(z) ∈ Ms,λ
d (p;β,A,B), then the function Fδ(z) is defined by

(16) Fδ(z) =
δ

zδ+p

∫ z

0
tδ+p−1f(t)dt

also belongs to the class Ms,λ
d (p;β,A,B).

Proof. Supoose that f ∈ Ms,λ
d (p;β,A,B) and put

(17)
p

1− pβ

 J s,λ
p,d
Fδ (z)

z
(
J s,λ

p,d Fδ (z)
)′ + β

 = −1 +Aω(z)

1 +Bω(z)
.

From (16), we have

z
(
J s,λ

p,d
Fδ(z)

)′

= δJ s,λ
p,d
f(z)− (δ + p)(J s,λ

p,d
Fδ(z))
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which implies that

(18)
z
(
J s,λ

p,d
Fδ(z)

)′

J s,λ
p,d Fδ (z)

=
δJ s,λ

p,d
f(z)

J s,λ
p,d Fδ(z)

− (δ + p) .

where the function ω(z) is either analytic or meromorphic in U with ω(0) = 0. Then,
by using (17) and (18), we have

z
(
J s,λ

p,d
f(z)

)′

J s,λ
p,d f (z)

= p(A−B)(1−pβ)zω′(z)
(δ+{(δ+p)[A−pβ(A−B)]−Bp}ω(z))(1+[A−pβ(A−B)]ω(z))

(19) − p(1 +Bω(z))

1 + [A− pβ(A−B)]ω(z)

and

z
(
J s,λ

p,d
f(z)

)′

J s,λ
p,d f (z)

+ p

= p(A−B)(1−pβ)zω′(z)
(δ+{(δ+p)[A−pβ(A−B)]−Bp}ω(z))(1+[A−pβ(A−B)]ω(z))

(20) +
p(A−B)(1− pβ)ω(z)

1 + [A− pβ(A−B)]ω(z)
.

Thus, the proof follows similar that proof of Theorem 1 and assume that (12) and
(13) hold true. Putting ω(z0) = eiθ(0 ≤ θ < 2π) and setting z = z0 in (19) and (20),
we have∣∣∣∣∣∣∣

pJ s,λ
p,d
f (z0) + z0

(
J s,λ

p,d
f (z0)

)′
B[pJ s,λ

p,d f (z0) + z0

(
J s,λ

p,d f (z0)
)′
] + (1− pβ)(A−B)z0

(
J s,λ

p,d f (z0)
)′
∣∣∣∣∣∣∣
2

− 1

=

∣∣∣∣∣∣∣∣∣
p+

z0
(
J s,λ
p,d

f(z0)
)′

J s,λ
p,d f(z0)

B[p+
z0

(
J s,λ
p,d f(z0)

)′

J s,λ
p,d f(z0)

] + (1− pβ)(A−B)
z0

(
J s,λ
p,d f(z0)

)′

J s,λ
p,d f(z0)

∣∣∣∣∣∣∣∣∣
2

− 1

=

∣∣∣∣(γ + δ) + {(δ + p)[A− pβ(A−B)]−Bp}eiθ

δ + {[A− pβ(A−B)](δ + p− γ)−Bp}eiθ

∣∣∣∣2 − 1

(21) =
Ω(θ)

|δ + {[A− pβ(A−B)](δ + p− γ)−Bp}eiθ|2
,
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where

Ω(θ) =
∣∣∣(γ + δ) + {(δ + p)M −Bp}eiθ

∣∣∣2 − ∣∣∣δ + {M(δ + p− γ)−Bp}eiθ
∣∣∣2

= 2γRe(δ) + γ2 + γ(2Re(δ) + 2p− γ)M2 − 2pBγM

+2γ cos θ(M(2Re(δ) + p)−Bp)

(22) (M = A− pβ(A−B);−1 ≤ B < A ≤ 1; γ ≥ 0; 0 ≤ θ < 2π).

Then by condition

Re(δ) ≥ p(A−B)(pβ − 1)

1 + [A− pβ(A−B)]
,

we have

Ω(0) = 2γRe(δ)+γ2+γ(2Re(δ)+2p−γ)M2−2pBγM+2γ(M(2Re(δ)+p)−Bp) ≥ 0

and

Ω(π) = 2γRe(δ)+γ2+γ(2Re(δ)+2p−γ)M2−2pBγM−2γ(M(2Re(δ)+p)−Bp) ≥ 0

which imply that

(23) Ω(θ) ≥ 0 (0 ≤ θ < 2π)

In view of (23) and (21), it would obviously contradict our hypothesis that

f ∈ Ms,λ
d (p;β,A,B).

Thus we must have

|ω(z)| < 1 (z ∈ U),

and we conclude from (17) that

Fδ(z) ∈ Ms,λ
d (p;β,A,B),

where the function is given by (16).

The proof of Theorem 3 is completed.

Theorem 4 Set −1 ≤ B < A ≤ 1; pβ > 1;λ, d ∈ R, the function f ∈ Ms,λ
d (p;β,A,B)

if and only if Fλ(z) given by

(24) Fλ(z) =
λ

zλ+p

∫ z

0
tλ+p−1f(t)dt
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belongs to the class Ms,λ+1
d (p;β,A,B).

Proof. By using (24), we have

λf(z) = (λ+ p)Fλ(z) + z(Fλ(z))
′

which, according to (3), we have

λJ s,λ
p,d
f(z) = (λ+ p)J s,λ

p,d
Fλ(z) + z(J s,λ

p,d
Fλ(z))

′ = λJ s,λ+1
p,d

Fλ(z).

Therefore, we have

J s,λ
p,d
f(z) = J s,λ+1

p,d
Fλ(z)

which gives the result.

Theorem 5 Set −1 ≤ B < A ≤ 1; pβ > 1 the function f ∈ Ms+1,λ
d (p;β,A,B) if

and only if Fd(z) given by

(25) Fd(z) =
d

zd+p

∫ z

0
td+p−1f(t)dt

belongs to the class Ms,λ
d (p;β,A,B).

Proof. The proof of Theorem 5 is similar to that of Theorem 4, so it is omitted.

Basic Properties of The Class M
+s,λ
d (p;β,A,B)

Throughout this section, we assume that

−1 ≤ B < A ≤ 1; pβ > 1;λ > 0, d ∈ C∗, s ∈ C.

We first determine a necessary and sufficient condition for a function f(z) ∈ Σp of

the form (8) to be in the class M
+s,λ
d (p;β,A,B).

Theorem 6 Let the function f(z) be given by (8). Then f(z) ∈ M
+s,λ
d (p;β,A,B)

if and only if

∞∑
n=p

[(n+ p) (1−B) + n(A−B)(pβ − 1)]

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
|an|

(26) ≤ p(A−B)(pβ − 1).

Proof Suppose that f(z) be given by (8) in the class M
+s,λ
d (p;β,A,B). Then from

(7) and (8), we have∣∣∣∣∣∣∣−
pJ s,λ

p,d
f (z) + z

(
J s,λ

p,d
f (z)

)′
B[pJ s,λ

p,d f (z) + z
(
J s,λ

p,d f (z)
)′
] + (1− pβ)(A−B)z

(
J s,λ

p,d f (z)
)′
∣∣∣∣∣∣∣
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(27)

=

∣∣∣∣∣∣
∞∑

n=p
(n+p)( d

n+d)
s (λ)n
(1)n

|an|zn+p

p(pβ−1)(A−B)+
∞∑

n=p
(Bp+nB)( d

n+d)
s (λ)n
(1)n

|an|zn+p−
∞∑

n=p
n(pβ−1)(A−B)( d

n+d)
s (λ)n
(1)n

|an|zn+p

∣∣∣∣∣∣ < 1

(z ∈ U) . Since |Re(z)| < |z| for all z, choosing z to be real and letting z −→ 1−

through real values, (27) yields

∞∑
n=p

[(n+ p) (1−B) + n(A−B)(pβ − 1)]

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
|an|

(28) ≤ p(A−B)(pβ − 1).

Conversely, we assume that the inequality (26) holds true.

Then, if we let z ∈ ∂U we find from (8) and (26) that∣∣∣∣∣∣∣
pJ s,λ

p,d
f (z) + z

(
J s,λ

p,d
f (z)

)′
B[pJ s,λ

p,d f (z) + z
(
J s,λ

p,d f (z)
)′
] + (1− pβ)(A−B)z

(
J s,λ

p,d f (z)
)′
∣∣∣∣∣∣∣

<

∞∑
n=p

(n+p)|( d
n+d)

s| (λ)n(1)n
|an|

p(pβ−1)(A−B)+
∞∑

n=p
[B(n+p)−n(A−B)(pβ−1)]|( d

n+d)
s| (λ)n(1)n

|an|

(29) ≤ 1 (z ∈ ∂U = {z ∈ C : |z| = 1}).

Hence, by the Maximum Modulus Theorem, we conclude f(z) ∈ M
+s,λ
d (p;β,A,B).

This completes the proof of Theorem 6.

Corollary 1 Let the function f(z) be given by (8). If f(z) ∈ M
+s,λ
d (p;β,A,B),

then

|an| ≤
p(A−B)(pβ − 1)

[(n+ p) (1−B) + n(A−B)(pβ − 1)]
.

∣∣∣∣(n+ d

d

)s∣∣∣∣ (1)n(λ)n

(n = p, p+ 1, p+ 2, ...; p ∈ N) .

The result is sharp for the function f(z) given by

(30) f(z) = z−p +
p(A−B)(pβ − 1)

[(n+ p) (1−B) + n(A−B)(pβ − 1)]

∣∣∣∣(n+ d

d

)s∣∣∣∣ (1)n(λ)n
zn

(n = p, p+ 1, p+ 2, ...; p ∈ N) .

Now, we prove the following growth and distortion theorems for the class

M
+s,λ
d (p;β,A,B).
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Theorem 7 Let a function f(z) defined by (8) is in the class M
+s,λ
d (p;β,A,B). If

the sequence {Cn}∞n=p is nondecreasing, then

(31) r−p − p(A−B)(pβ−1)
Cp

rp ≤ |f(z)| ≤ r−p + p(A−B)(pβ−1)
Cp

rp, (0 < |z| = r < 1) ,

where

(32) Cn = [(n+ p) (1−B) + n(A−B)(pβ − 1)]

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n

(n = p, p+ 1, p+ 2, ...; p ∈ N) .

If the sequence {Cn/n}∞n=p is nondecreasing, then
(33)

pr−p−1−p2(A−B)(pβ−1)
Cp

rp−1 ≤
∣∣f ′(z)∣∣ ≤ pr−p−1+p2(A−B)(pβ−1)

Cp
rp−1, (0 < |z| = r < 1) .

The results are sharp for the function given by (30.

Proof. Let the function of the form (8) in the classM
+s,λ
d (p;β,A,B). If the sequence

{Cn}∞n=p is nondecreasing, then by Theorem 6, we have

(34)

∞∑
n=p

|an| ≤
p(A−B)(pβ − 1)

Cp

and the sequence {Cn/n}∞n=p is nondecreasing, Theorem 3 also implies

(35)

∞∑
n=p

n |an| ≤
p2(A−B)(pβ − 1)

Cp

Thus, assertion (31) and (33) follow immediately.

Finally, it is easy to see that the bounds in (31) and (33) are attained for the
function given by (30), with n = p.

Next, we determine the radii of meromorphically p-valent starlikeness and mero-

morphically p-valent convexity of the class M
+s,λ
d (p;β,A,B).

Theorem 8 Let a function f(z) defined by (8) is in the class M
+s,λ
d (p;β,A,B).

Then we have

(i) f is meromorphically p-valent starlike of order δ(0 ≤ δ < 1) in |z| < r1, that
is

Re

{
−zf

′(z)

pf(z)

}
> δ (|z| < r1; 0 ≤ δ < 1; p ∈ N),

where

(36) r1 = inf
n≥p

{
(1−δ)[(n+p)(1−B)+n(A−B)(pβ−1)]

(A−B)(pβ−1)(n+δp)

∣∣∣( d
n+d

)s∣∣∣ (λ)n(1)n

} 1
n+p

;
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(ii) f is meromorphically p-valent convex of order δ(0 ≤ δ < 1) in |z| < r2, that is

Re

{
−(zf ′(z))′

pf ′(z)

}
> δ (|z| < r2; 0 ≤ δ < 1; p ∈ N),

where

(37) r2 = inf
n≥p

{
p(1−δ)[(n+p)(1−B)+n(A−B)(pβ−1)]

n(A−B)(pβ−1)(n+δp) .
∣∣∣( d

n+d

)s∣∣∣ (λ)n(1)n

} 1
n+p

.

Each of these results is sharp for the function given by (30).
Proof. (i) From the definition (8), we easily get

(38)

∣∣∣∣∣∣
1 + zf ′(z)

pf(z)

zf ′(z)
pf(z) + 2δ − 1

∣∣∣∣∣∣ ≤
∞∑
n=p

(n+ p) |an| |z|n+p

2p (1− δ)−
∞∑
n=p

[n− p(1− 2δ)] |an| |z|n+p

Thus, we have the desired inequality

(39)

∣∣∣∣∣∣
1 + zf ′(z)

pf(z)

zf ′(z)
pf(z) + 2δ − 1

∣∣∣∣∣∣ ≤ 1 (0 ≤ δ < 1; p ∈ N),

if

(40)

∞∑
n=p

(n+ δp)

p (1− δ)
|an| |z|n+p ≤ 1,

that is, if

(41) (n+δp)
p(1−δ) |z|

n+p ≤ [(n+p)(1−B)+n(A−B)(pβ−1)]
p(A−B)(pβ−1) .

∣∣∣( d
n+d

)s∣∣∣ (λ)n(1)n

(n = p, p+ 1, p+ 2, ...; p ∈ N) .

The last inequality (41) leads us immediately to the disc |z| < r1, where r1 is given
by (36).

(ii) In order to prove the second assertion of Theorem 8, we find from the defi-
nition (8) that

(42)

∣∣∣∣∣∣
1 + (zf ′(z))′

pf ′(z)

(zf ′(z))′

pf ′(z) + 2δ − 1

∣∣∣∣∣∣ ≤
∞∑
n=p

n (n+ p) |an| |z|n+p

2p2 (1− δ)−
∞∑
n=p

n [n− p(1− 2δ)] |an| |z|n+p

Thus, we have the desired inequality

(43)

∣∣∣∣∣∣
1 + (zf ′(z))′

pf ′(z)

(zf ′(z))′

pf ′(z) + 2δ − 1

∣∣∣∣∣∣ ≤ 1 (0 ≤ δ < 1; p ∈ N),
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if

(44)
∞∑
n=p

n (n+ δp)

p2 (1− δ)
|an| |z|n+p ≤ 1,

that is, if

(45) n(n+δp)
p2(1−δ) |z|

n+p ≤ [(n+p)(1−B)+n(A−B)(pβ−1)]
p(A−B)(pβ−1) .

∣∣∣( d
n+d

)s∣∣∣ (λ)n(1)n

(n = p, p+ 1, p+ 2, ...; p ∈ N) .

The last inequality (45) leads us immediately to the disc |z| < r2, where r2 is given
by (37). The proof of Theorem 8 is completed.

Theorem 9 Let ν > 0. If f ∈ M
+s,λ
d (p;β,A,B), the function F (z) given by

F (z) =
ν

zν+p

∫ z

0
tν+p−1f(t)dt

belongs to the class M
+s,λ
d (p;β,A,B).

Proof. Suppose that f ∈ M
+s,λ
d (p;β,A,B), from (26), we have

∞∑
n=p

[(n+ p) (1−B) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
|an| ≤ 1.

Since

F (z) =
ν

zν+p

∫ z

0
tν−p−1f(t)dt = z−p +

∞∑
n=p

ν

ν + n+ p
. |an| zk,

we obtain

∞∑
n=p

[(n+ p) (1−B) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
.

ν

ν + n+ p
. |an|

≤
∞∑
n=p

[(n+ p) (1−B) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
|an|

≤ 1,

which implies that F (z) ∈ M
+s,λ
d (p;β,A,B).

This evidently completes the proof of Theorem 9.

Neighborhoods and Partial Sums

Following the earlier works (based upon the familiar concept of neighborhoods
of analytic functions) by Rusceheweyh [21], and (more recently) by Altintas [2],
J. L. Liu and H. M. Srivastava [14], and M. S. Liu and N. S. Song [13], (see also
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[1, 3, 4, 11, 18, 19, 22, 23, 24]), we define the δ−neighborhood of a function f(z) ∈ Σp
of the form (1) by

Nδ(f) =

{
g ∈ Σp : g(z) = z−p +

∞∑
n=1

bnz
n−p and(46)

∞∑
n=1

n(1+|A−pβ(A−B)|)+p(A−B)(pβ−1)
p(A−B)(pβ−1)

∣∣∣( d
n+d

)s∣∣∣ (λ)n(1)n
||an| − |bn|| ≤ δ

}
(d ∈ C∗, s ∈ C, λ > 0, p ∈ N;−1 ≤ B < A ≤ 1; pβ > 1)

and if
e(z) = z−p (p ∈ N),

then

Nδ(e) =

{
g ∈ Σp : g(z) = z−p +

∞∑
n=1

bnz
n−p and

∞∑
n=1

n(1+|A−pβ(A−B)|)+p(A−B)(pβ−1)
p(A−B)(pβ−1)

∣∣∣( d
n+d

)s∣∣∣ (λ)n(1)n
|bn| ≤ δ

}
.

Theorem 10 Let f ∈ Ms,λ
d (p;β,A,B), (−1 ≤ B < A ≤ 1; pβ > 1) be given by (1).

If f satisfies the condition

(47)
f(z) + ϵz−p

1 + ϵ
∈ Ms,λ

d (p;β,A,B) (ϵ ∈ C; |ϵ| < δ; δ > 0)

then

(48) Nδ(f) ⊂ Ms,λ
d (p;β,A,B).

Proof. It is obvious from (7) that g ∈ Ms,λ
d (p;β,A,B) if and only if

(49) −
pJ s,λ

p,d
g (z) + z

(
J s,λ

p,d
g (z)

)′
B[pJ s,λ

p,d g (z) + z
(
J s,λ

p,d g (z)
)′
] + (1− pβ)(A−B)z

(
J s,λ

p,d g (z)
)′ ̸= σ

(σ ∈ C; |σ| = 1; z ∈ U∗),

which is equivalent to

(50)
(g ∗ h)(z)
z−p

̸= 0 (z ∈ U∗) ,

where, for convenience,

h(z) = z−p+

∞∑
n=1

cnz
n−p
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(51) =

∞∑
n=1

n[1 + σ(A− pβ (A−B))] + pσ(A−B)(pβ − 1)

pσ(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
zn−p.

We find from (51) that

|cn| =
∣∣∣∣n[1 + σ(A− pβ (A−B))] + pσ(A−B)(pβ − 1)

pσ(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n

∣∣∣∣
(52) ≤ n(1 + |A− pβ (A−B)|) + p(A−B)(pβ − 1)

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n

(n = p, p+ 1, p+ 2, ...; p ∈ N).
Under the hypothesis of Theorem 10, (50) yields

(53)

∣∣∣∣(f ∗ h)(z)
z−p

∣∣∣∣ ≥ δ (δ > 0; z ∈ U∗) .

Setting

(54) g(z) = z−p +

∞∑
n=1

bnz
n−p ∈ Nδ(f),

we have∣∣∣∣(f(z)− g(z)) ∗ h(z)
z−p

∣∣∣∣
=

∞∑
n=1

|an − bn| cnzn

(55)

≤ |z|
∞∑
n=1

n(1 + |A− pβ (A−B)|) + p(A−B)(pβ − 1)

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
|an − bn| < δ

(56) (δ > 0; z ∈ U∗) .

Thus we have (50) and hence (49) for any σ ∈ C such that |σ| = 1, which implies

that Nδ(f) ⊂ Ms,λ
d (p;β,A,B). This evidently proves the assertion (48) of Theorem

10.
We now define the δ−neighborhood of a function f(z) ∈ Σp of the form (8) by

N+
δ (f) =

{
g ∈ Σp : g(z) = z−p +

∞∑
n=p

|bn| zn−p and

∞∑
n=p

n(1+|A−pβ(A−B)|)+p(A−B)(pβ−1)
p(A−B)(pβ−1)

∣∣∣( d
n+d

)s∣∣∣ (λ)n(1)n
||an| − |bn||

≤ δ (d ∈ C∗, s ∈ C, λ > 0, p ∈ N;−1 ≤ B < A ≤ 1; pβ > 1)
}
,(57)
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Theorem 11 If f ∈ M
+s,λ
d (p;β,A,B) and −1 ≤ B ≤ 0, then

(58) N+
δ (f) ⊂ M

+s,λ
d (p;β,A,B) (δ =

2p

λ+ 2p
).

The result is sharp.
Proof. Making use of the same method as in the proof of Theorem 10, we can show
that

h(z) = z−p +

∞∑
n=p

cnz
n

=

∞∑
n=p

[(n+ p) (1− σB) + σn(A−B)(pβ − 1)]

pσ(B −A)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n+p(1)n+p
zn(59)

we find from (59) that

|cn| =

∣∣∣∣∣ [(n+ p) (1 + |B|) + n(A−B)(pβ − 1)]

p(B −A)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n+p(1)n+p

∣∣∣∣∣
≤ [(n+ p) (1 + |B|) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n+p(1)n+p

(n = p, p+ 1, ...; p ∈ N).

Thus, under hypothesis −1 ≤ B ≤ 0, if f ∈ M
+s,λ
d (p;β,A,B) is given by (8), we

have ∣∣∣∣(f ∗ h)(z)
z−p

∣∣∣∣ =
∣∣∣∣∣1 +

∞∑
n=p

cn |an| zn+p
∣∣∣∣∣

≥ 1−
∞∑
n=p

|cn| |an|

≥ 1−
∞∑
n=p

[(n+p)(1+|B|)+n(A−B)(pβ−1)]
p(A−B)(pβ−1)

∣∣∣( d
n+d

)s∣∣∣ (λ+ 1)n+p
(1)n+p

. λ
λ+n+p |an|

≥ 1− λ
λ+2p

∞∑
n=p

[(n+p)(1+|B|)+n(A−B)(pβ−1)]
p(A−B)(pβ−1)

∣∣∣( d
n+d

)s∣∣∣ (λ+1)n+p

(1)n+p
|an|

= 1− λ

λ+ 2p

∞∑
n=p

[(n+ p) (1−B) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ+ 1)n+p
(1)n+p

|an| .

By Theorem 6, we obtain∣∣∣∣(f ∗ h)(z)
z−p

∣∣∣∣ ≥ 1− λ

λ+ 2p
=

2p

λ+ 2p
= δ.

The remainder of the proof of Theorem 11 is similar to that of Theorem 10, and
we skip the details involved.
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Theorem 12 Let (−1 ≤ B < A ≤ 1; pβ > 1) and δ be a real number with

δ >
p(A−B)(pβ − 1)

1 + [A− pβ(A−B)]
.

If the function f(z) given by (8) is in the class M
+s,λ
d (p;β,A,B), then Fδ(z) defined

by (16) belongs to N+
1 (f). The result is sharp.

Proof. Suppose that f(z) = z−p +
∞∑
n=p

|an| zn ∈ M
+s,λ
d (p;β,A,B), then it follows

from (16) and Theorem 9 that

(60) Fδ(z) = z−p +

∞∑
n=p

|bn| zn = z−p +

∞∑
n=p

δ

δ + p+ n
|an| zn ∈ M

+s,λ
d (p;β,A,B).

From the hypothesis of Theorem 12, we have

∞∑
n=p

[(n+p)(1+|B|)+n(A−B)(pβ−1)]
p(A−B)(pβ−1) .

∣∣∣( d
n+d

)s∣∣∣ (λ)n+p

(1)n+p
||an| − |bn||

=

∞∑
n=p

[(n+p)(1+|B|)+n(A−B)(pβ−1)]
p(A−B)(pβ−1) .

∣∣∣( d
n+d

)s∣∣∣ (λ)n+p

(1)n+p
. n+p
δ+n+p |an|

≤
∞∑
n=p

[(n+p)(1+|B|)+n(A−B)(pβ−1)]
p(A−B)(pβ−1) .

∣∣∣( d
n+d

)s∣∣∣ (λ)n+p
(1)n+p

|an|

≤ 1 (f ∈ M
+s,λ
d (p;β,A,B),

which shows that Fδ(z) ∈ N+
1 (f).

In order to verify the sharpness of the assertion Theorem 12, we consider the
function f(z) given by (30). From (30) and (60), we have

Fδ(z) =
δ

zδ+p

∫ z

0
tδ+p−1f(t)dt

=
δ

zδ+p

∫ z

0
tδ+p−1

(
t−p +

p(A−B)(pβ − 1)

[(n+ p) (1−B) + n(A−B)(pβ − 1)]
.

∣∣∣∣(n+ d

d

)s∣∣∣∣ (1)n(λ)n
tn
)
dt

= z−p + p(A−B)(pβ−1)
[(n+p)(1−B)+n(A−B)(pβ−1)] .

∣∣∣∣(n+ d

d

)s∣∣∣∣ (1)n(λ)n
.

δ

δ + n+ p
zn

(n = p, p+ 1, p+ 2, ...; p ∈ N).

Thus, by making use of (57), we have

∞∑
n=p

n(1 + |A− pβ (A−B)|) + p(A−B)(pβ − 1)

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
||an| − |bn||

=
p+ n

δ + n+ p
→ 1(n −→ ∞),

This completes the proof of Theorem 12.
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Theorem 13 Let (−1 ≤ B < A ≤ 1; pβ > 1) and δ be a real number with

δ >
p(A−B)(pβ − 1)

1 + [A− pβ(A−B)]
.

If f ∈ M
+s,λ+1
d (p;β,A,B), then

(61) N+
δ′ (Fδ) ⊂ M

+s,λ
d (p;β,A,B)

(
δ′ =

2p (λ+ δ + 2p)

(λ+ 2p) (δ + 2p)

)
and Fδ(z) defined by (16).
Proof. Making use of the same method as in the proof of Theorem 11, we can show
that

h(z) = z−p +

∞∑
n=p

cnz
n

=

∞∑
n=p

[(n+ p) (1− σB) + σn(A−B)(pβ − 1)]

pσ(B −A)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n+p(1)n+p
zn(62)

we find from (62) that

|cn| =

∣∣∣∣∣ [(n+ p) (1 + |B|) + n(A−B)(pβ − 1)]

p(B −A)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n+p(1)n+p

∣∣∣∣∣
≤ [(n+ p) (1 + |B|) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n+p(1)n+p

(n = p, p+ 1, ...; p ∈ N).

Thus, under hypothesis −1 ≤ B ≤ 0, if Fδ ∈ M
+s,λ
d (p;β,A,B) is given by (60), we

have∣∣∣∣(Fδ ∗ h)(z)z−p

∣∣∣∣ =
∣∣∣∣∣1 +

∞∑
n=p

cn |an| zn+p
∣∣∣∣∣

≥ 1−
∞∑
n=p

|cn| |an|

≥ 1−
∞∑
n=p

[(n+p) (1+|B|)+n(A−B)(pβ−1)]

p(A−B)(pβ − 1)

∣∣∣( d
n+d

)s∣∣∣ (λ+ 1)n+p
(1)n+p

δ
δ+p+n .

λ
λ+n+p |an|

≥ 1− δλ

(λ+2p) (δ+2p)

∞∑
n=p

[(n+p) (1+|B|)+n(A−B)(pβ−1)]

p(A−B)(pβ−1)

∣∣∣∣( d

n+d

)s∣∣∣∣ (λ+1)n+p
(1)n+p

|an|

=1− δλ

(λ+2p) (δ+2p)

∞∑
n=p

[(n+p) (1−B)+n(A−B)(pβ−1)]

p(A−B)(pβ−1)

∣∣∣∣( d

n+d

)s∣∣∣∣ (λ+1)n+p
(1)n+p

|an| .
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By Theorem 6, we obtain∣∣∣∣(Fδ ∗ h)(z)z−p

∣∣∣∣ ≥ 1− δλ
(λ+2p)(δ+2p) =

2p (λ+ δ + 2p)

(λ+ 2p) (δ + 2p)
= δ′.

Theorem 14 Let (−1 ≤ B < A ≤ 1; pβ > 1) and f ∈ Σp is given by (1) and define
the partial sums s1(z) and sm(z) by

(63) s1(z) = z−p and sm(z) = z−p +

m−1∑
n=1

anz
n−p (m ∈ N\ {1}).

Suppose that

(64)

∞∑
n=1

dn |an| ≤ 1 (dn = n(1+|A−pβ(A−B)|)+p(A−B)(pβ−1)
p(A−B)(pβ−1)

∣∣∣( d
n+d

)s∣∣∣ (λ)n(1)n

(i) If s > 0, λ > 0 and d > 0, then f(z) ∈ Ms,λ
d (p;β,A,B);

(ii) If λ > 0 and d > 0, then

(65) Re

{
f(z)

sm(z)

}
> 1− 1

dm
(m ∈ N; z ∈ U)

and

(66) Re

{
sm(z)

f(z)

}
>

dm
1 + dm

(m ∈ N; z ∈ U)

Each of these bounds in (65) and (66) is the best possible for each m ∈ N.
Proof. (i) It is not difficult to see that

z−p ∈ Ms,λ
d (p;β,A,B) (p ∈ N).

Thus from Theorem 10 and hypothesis (64), we have

(67) f(z) ∈ N1(e) ⊂ Ms,λ
d (p;β,A,B) (s > 0, λ > 0, d > 0; p ∈ N)

as asserted by Theorem 14.
(ii) For the coefficient dn given by (64), it easy to verify that

(68) dn+1 > dn (s > 0, λ > 0, d > 0;n = p, p+ 1, p+ 2, ...; p ∈ N) .

So, we have

(69)

m−1∑
n=1

|an|+ dm

∞∑
n=m

|an| ≤
∞∑
n=1

dn |an| ≤ 1

by using the hypothesis (64) again.
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Setting

(70) g1(z) = dm

[
f(z)

sm(z)
− (1− 1

dm
)

]
= 1 +

dm
∞∑
n=m

anz
n

m−1∑
n=1

anzn

and applying (63), we have

(71)

∣∣∣∣g1(z)− 1

g1(z) + 1

∣∣∣∣ ≤ dm
∞∑
n=m

|an|

2− 2
m−1∑
n=1

|an| − dm
∞∑
n=m

|an|
≤
dm

∞∑
n=m

|an|

1−
m−1∑
n=1

|an|
≤ 1 (z ∈ U)

which readily yields the assertion (65) of Theorem 14.
If we take

(72) f(z) = z−p +
1

dm
zm−p,

then, for
z = rei

π
m ,

we have
f(z)

sm(z)
= 1 +

zm

dm
−→ 1− 1

dm
as z −→ 1−,

which shows that the bound in (65) is the best possible for each n ∈ N.
Similarly, if we put

(73) g2(z) = (1 + dm)

[
sm(z)

f(z)
− dm

1 + dm

]
= 1−

(1 + dm)
∞∑
n=m

anz
n

1 +
m−1∑
n=1

anzn

and make use (69) we can deduce that

(74)

∣∣∣∣g2(z)− 1

g2(z) + 1

∣∣∣∣ ≤ (1 + dm)
∞∑
n=m

|an|

2− 2
m−1∑
n=1

|an|+ (1− dm)
∞∑
n=m

|an|
≤ 1 (z ∈ U)

which leads us immediately to the assertion (66) of Theorem 14.
The bound in (66) is sharp for each m ∈ N, with the extremal function f ∈ Σp

given by (72). The proof of Theorem 14 is completed.
Properties involving modified Hadamard Product

Let the functions fj(z) (j = 1, 2) be defined by

(75) fj(z) = z−p +

∞∑
n=p

|an,j | zn
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The modified Hadamard Product of f1(z) and f2(z) is defined by

(76) (f1 ∗ f2) (z) = z−p +

∞∑
n=p

|an,1| |an,2| zn

Theorem 15 Let the functions fj(z) (j = 1, 2) defined by (75) be in the class

M
+s,λ
d (p;β,A,B). Then (f1 ∗ f2) (z) ∈ M

+s,λ
d (p; ζ, A,B), where

(77) ζ = 1
p −

2(A−B)(pβ−1)2(1−B)

p(A−B)2(pβ−1)2−p[2(1−B)+(A−B)(pβ−1)]2
∣∣∣( d

p+d

)s∣∣∣ (λ)p(1)p

The result is sharp for the functions fj(z) (j = 1, 2) given by

fj(z) = z−p +

∞∑
n=p

(A−B)(pβ−1)
2(1−B)+(A−B)(pβ−1)

∣∣∣(p+dd )s∣∣∣ (1)p(λ)p
zn(78)

(j = 1, 2; p ∈ N).

Proof. Employing the techniques used earlier by Schild and Silverman [22], we need
to find the largest ζ = (p; ζ, A,B) such that,
(79)

∞∑
n=p

[(n+p)(1−B)+n(A−B)(pζ−1)]
p(A−B)(pζ−1)

∣∣∣( d
n+d

)s∣∣∣ (λ)n(1)n
|an,1| |an,2| ≤ 1.

Since fj(z) ∈ M
+s,λ
d (p;β,A,B) (j = 1, 2), we have

∞∑
n=p

[(n+p)(1−B)+n(A−B)(pβ−1)]
p(A−B)(pβ−1)

∣∣∣( d
n+d

)s∣∣∣ (λ)n(1)n
|an,j | ≤ 1

(j = 1, 2).(80)

Therefore, by the Cauchy-Schwarz inequality, we obtain

(81)

∞∑
n=p

[(n+p)(1−B)+n(A−B)(pβ−1)]
p(A−B)(pβ−1)

∣∣∣( d
n+d

)s∣∣∣ (λ)n(1)n

√
|an,1| |an,2| ≤ 1.

Thus it is sufficient to show that

[(n+ p) (1−B) + n(A−B)(pζ − 1)]

(pζ − 1)
|an,1| |an,2|

≤ [(n+ p) (1−B) + n(A−B)(pβ − 1)]

(pβ − 1)

√
|an,1| |an,2|,(82)

or, equivalently that

(83)
√

|an,1| |an,2| ≤
[(n+ p) (1−B) + n(A−B)(pβ − 1)](pζ − 1)

[(n+ p) (1−B) + n(A−B)(pζ − 1)](pβ − 1)
(k ≥ p).
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Hence, by inequality (81), it is sufficient to prove that

∞∑
n=p

[(n+ p) (1−B) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)
∣∣∣( d

n+d

)s∣∣∣ (λ)n(1)n

≤ [(n+ p) (1−B) + n(A−B)(pβ − 1)](pζ − 1)

[(n+ p) (1−B) + n(A−B)(pζ − 1)](pβ − 1)
.(84)

It follows from (84) that
(85)

ζ ≤ 1
p −

(A−B)(pβ−1)2(1−B)(n+p)

np(A−B)2(pβ−1)2−[(n+p)(1−B)+n(A−B)(pβ−1)]2|( d
n+d)

s| (λ)n(1)n

.

Now, defining the function φ(n) by
(86)

φ(n) = 1
p−

(A−B)(pβ−1)2(1−B)(n+p)

np(A−B)2(pβ−1)2−[(n+p)(1−B)+n(A−B)(pβ−1)]2
∣∣∣( d

p+d

)s∣∣∣ (λ)n(1)n

(n ≥ p).

We see that φ(n) is an increasing function of n (n ≥ p). Therefore we conclude that
(87)

ζ ≤ φ(p) = 1
p−

2(A−B)(pβ−1)2(1−B)

p(A−B)2(pβ−1)2−p[2(1−B)+(A−B)(pβ−1)]2
∣∣∣( d

p+d

)s∣∣∣ (λ)p(1)p

,

which completes the proof of Theorem 15.

Theorem 16 Let the function f1(z) defined by (75) be in the class M
+s,λ
d (p;β,A,B)

and the function f2(z) defined by (75) be in the class M
+s,λ
d (p;µ,A,B). Then

(f1 ∗ f2) (z) ∈ M
+s,λ
d (p; γ,A,B), where

(88) γ =
1

p
− 2(A−B)(pβ − 1)(1−B)(pµ− 1)

p(A−B)2(pβ − 1)(pµ− 1)− pMN
∣∣∣( d

p+d

)s∣∣∣ (λ)p(1)p

,

where M = [2(1−B) + (A−B)(pβ − 1)] and N = [2(1−B) + (A−B)(pµ− 1)].
The result is sharp for the function fj(z) (j = 1, 2) given by

(89) f1(z) = z−p +

∞∑
n=p

(A−B)(pβ − 1)

2(1−B) + (A−B)(pβ − 1)

∣∣∣∣(p+ d

d

)s∣∣∣∣ (1)p(λ)p
zn (p ∈ N).

and

(90) f2(z) = z−p +

∞∑
n=p

(A−B)(pµ− 1)

2(1−B) + (A−B)(pµ− 1)

∣∣∣∣(p+ d

d

)s∣∣∣∣ (1)p(λ)p
zn (p ∈ N).

Theorem 17 Let the functions fj(z) (j = 1, 2) defined by (75) be in the class , then
the function h(z) defined by

(91) h(z) = z−p +

∞∑
n=p

(a2n,1 + a2n,2)z
n
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belongs to the class M
+s,λ
d (p; η,A,B), where

η =
1

p
− 4(A−B)(pβ − 1)2(1−B)

2p(A−B)2(pβ − 1)2 − p[2(1−B) + (A−B)(pβ − 1)]2
∣∣∣( d

p+d

)∣∣∣s (λ)p
(1)p

The result is sharp for the functions fj(z) (j = 1, 2) are given by (78).

Proof. For fj(z) ∈ M
+s,λ
d (p;β,A,B) (j = 1, 2), we have

∞∑
n=p

[(n+ p) (1−B) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
|an,j | ≤ 1.

Therefore,
∞∑
n=p

[
[(n+ p) (1−B) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n

]2
|an,j |2[ ∞∑

n=p

[(n+ p) (1−B) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
|an,j |

]2
≤ 1 (j = 1, 2).(92)

So,
∞∑
n=p

1

2

[
[(n+ p) (1−B) + n(A−B)(pβ − 1)]

p(A−B)(pβ − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n

]2 [
|an,j |2 + |an,j |2

]
≤ 1.

In order to obtain our result, we have to find the largest η such that
∞∑
n=p

[(n+ p) (1−B) + n(A−B)(pη − 1)]

p(A−B)(pη − 1)

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n

[
|an,j |2 + |an,j |2

]
≤ 1.

It is sure if

[(n+ p) (1−B) + n(A−B)(pη − 1)]

p(A−B)(pη − 1)

≤ 1

2

[(n+ p) (1−B) + n(A−B)(pβ − 1)]2

p(A−B)(pβ − 1)2

∣∣∣∣( d

n+ d

)s∣∣∣∣ (λ)n(1)n
,

so that

η ≤ 1
p −

(n+p)(A−B)(pβ−1)2(1−B)

np(A−B)2(pβ−1)2− 1
2
[(n+p)(1−B)+n(A−B)(pβ−1)]2|( d

n+d)
s| (λ)n(1)n

.

Now, we define the function ψ(n) by

ψ(n) = 1
p−

4(A−B)(pβ−1)2(1−B)

np(A−B)2(pβ−1)2− 1
2
[(n+p)(1−B)+n(A−B)(pβ−1)]2|( d

n+d)
s| (λ)n(1)n

(n ≥ p) .

We see that ψ(n) is an increasing function of n (n ≥ p). Therefore we conclude that

η ≤ ψ(n) = 1
p−

4(A−B)(pβ−1)2(1−B)

2p(A−B)2(pβ−1)2−p[2(1−B)+(A−B)(pβ−1)]2
∣∣∣( d

p+d

)∣∣∣s (λ)p
(1)p

,

which completes the proof of Theorem 17.
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Riesz triple almost lacunary χ3 sequence spaces defined
by a Orlicz function

Deepmala, N. Subramanian, Lakshmi Narayan Mishra

Abstract

In this paper we introduce a new concept for Riesz almost lacunary χ3

sequence spaces strong P− convergent to zero with respect to an Orlicz function
and examine some properties of the resulting sequence spaces. We also introduce
and study statistical convergence of Riesz almost lacunary χ3 sequence spaces
and also some inclusion theorems are discussed.

2010 Mathematics Subject Classification: 40A05,40C05,40D05.

Key words and phrases: analytic sequence, Orlicz function, double sequences,
chi sequence, Riesz space .

1 Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued
single sequences, respectively. We write w3 for the set of all complex triple sequences
(xmnk), where m,n, k ∈ N, the set of positive integers. Then, w3 is a linear space
under the coordinate wise addition and scalar multiplication.

We can represent triple sequences by matrix. In case of double sequences we
write in the form of a square. In the case of a triple sequence it will be in the form
of a box in three dimensional case.

Some initial work on double series is found in Apostol [1] and double sequence
spaces is found in Hardy [7], Subramanian et al. [8-14], and many others. Later on
investigated by some initial work on triple sequence spaces is found in Sahiner et al.
[15] , Esi et al. [2-6], Subramanian et al. [16-25], V.N. Mishra [31] and many others.

Let (xmnk) be a triple sequence of real or complex numbers. Then the series∑∞
m,n,k=1 xmnk is called a triple series. The triple series

∑∞
m,n,k=1 xmnk give one

space is said to be convergent if and only if the triple sequence (Smnk)is convergent,
where

Smnk =
∑m,n,k

i,j,q=1 xijq(m,n, k = 1, 2, 3, ...) .

91
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A sequence x = (xmnk)is said to be triple analytic if

supm,n,k |xmnk|
1

m+n+k <∞.

The vector space of all triple analytic sequences are usually denoted by Λ3. A
sequence x = (xmnk) is called triple entire sequence if

|xmnk|
1

m+n+k → 0 as m,n, k → ∞.

The vector space of all triple entire sequences are usually denoted by Γ3. Let the set
of sequences with this property be denoted by Λ3 and Γ3 is a metric space with the
metric

(1) d(x, y) = supm,n,k

{
|xmnk − ymnk|

1
m+n+k : m,n, k : 1, 2, 3, ...

}
,

forallx = {xmnk}andy = {ymnk} inΓ3. Let ϕ = {finite sequences} .

Consider a triple sequence x = (xmnk). The (m,n, k)th section x[m,n,k] of the

sequence is defined by x[m,n,k] =
∑m,n,k

i,j,q=0xijqδijq for all m,n, k ∈ N,

δijq =



0 0 ...0 0 ...
0 0 ...0 0 ...
.
.
.
0 0 ...1 0 ...
0 0 ...0 0 ...
. . .... . ...


with 1 in the [i, j, q]th section and zero otherwise.

A sequence x = (xmnk) is called triple gai sequence if ((m+ n+ k)! |xmnk|)
1

m+n+k →
0 as m,n, k → ∞. The triple gai sequences will be denoted by χ3.

2 Definitions and Preliminaries

A triple sequence x = (xmnk) has limit 0 (denoted by P − limx = 0)

(i.e) ((m+ n+ k)! |xmnk|)1/m+n+k → 0 as m,n, k → ∞. We shall write more briefly
as P − convergent to 0.

Definition 1 A modulus function was introduced by Nakano [26]. We recall that a
modulus f is a function from [0,∞) → [0,∞) , such that
(1) f (x) = 0 if and only if x = 0
(2) f (x+ y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0,
(3) f is increasing,
(4) f is continuous from the right at 0. Since |f (x)− f (y)| ≤ f (|x− y|) , it follows
from here that f is continuous on [0,∞) .
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Definition 2 A triple sequence x = (xmnk) of real numbers is called almost P−
convergent to a limit 0 if

P −
limp,q,u→∞supr,s,t≥0

1
pqu

∑r+p−1
m=r

∑s+q−1
n=s

∑t+u−1
k=t ((m+ n+ k)! |xmnk|)1/m+n+k → 0.

that is, the average value of (xmnk) taken over any rectangle
{(m,n, k) : r ≤ m ≤ r + p− 1, s ≤ n ≤ s+ q − 1, t ≤ k ≤ t+ u− 1} tends to 0 as both
p, q and u to ∞, and this P− convergence is uniform in i, ℓ and j. Let denot the set

of sequences with this property as
[
χ̂3
]
.

Definition 3 Let (qrst) , (qrst) ,
(
qrst
)
be sequences of positive numbers and

Qr =



q11 q12 ... q1s 0...
q21 q22 ... q2s 0...
.
.
.
qr1 qr2 ... qrs 0...
0 0 ...0 0 0...


= q11 + q12 + . . .+ qrs ̸= 0,

Qs =



q11 q12 ... q1s 0...
q21 q22 ... q2s 0...
.
.
.
qr1 qr2 ... qrs 0...
0 0 ...0 0 0...


= q11 + q12 + . . .+ qrs ̸= 0,

Qt =



q11 q12 ... q1s 0...
q21 q22 ... q2s 0...
.
.
.
qr1 qr2 ... qrs 0...
0 0 ...0 0 0...


= q11+q12+ . . .+qrs ̸= 0. Then the transformation

is given by
Trst =

1

QrQsQt

∑r
m=1

∑s
n=1

∑t
k=1 qmqnqk ((m+ n+ k)! |xmnk|)1/m+n+k is called the

Riesz mean of triple sequence x = (xmnk) . If P − limrstTrst (x) = 0, 0 ∈ R, then
the sequence x = (xmnk) is said to be Riesz convergent to 0. If x = (xmnk) is Riesz
convergent to 0, then we write PR − limx = 0.

Definition 4 The triple sequence θi,ℓ,j = {(mi, nℓ, kj)} is called triple lacunary if
there exist three increasing sequences of integers such that

m0 = 0, hi = mi −mr−1 → ∞ as i→ ∞ and
n0 = 0, hℓ = nℓ − nℓ−1 → ∞ as ℓ→ ∞.
k0 = 0, hj = kj − kj−1 → ∞ as j → ∞.
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Let mi,ℓ,j = minℓkj , hi,ℓ,j = hihℓhj , and θi,ℓ,j is determine by
Ii,ℓ,j = {(m,n, k) : mi−1 < m < mi andnℓ−1 < n ≤ nℓ andkj−1 < k ≤ kj} , qk = mk

mk−1
,

qℓ =
nℓ
nℓ−1

, qj =
kj
kj−1

.

Using the notations of lacunary sequence and Riesz mean for triple sequences.
θi,ℓ,j = {(mi, nℓ, kj)} be a triple lacunary sequence and qmqnqk be sequences of
positive real numbers such that Qmi =

∑
m∈(0,mi]

pmi , Qnℓ
=
∑

n∈(0,nℓ]
pnℓ

, Qnj =∑
k∈(0,kj ] pkj and Hi =

∑
m∈(0,mi]

pmi , H =
∑

n∈(0,nℓ]
pnℓ

, H =
∑

k∈(0,kj ] pkj . Clearly,

Hi = Qmi − Qmi−1 , Hℓ = Qnℓ
− Qnℓ−1

, Hj = Qkj − Qkj−1
. If the Riesz trans-

formation of triple sequences is RH-regular, and Hi = Qmi − Qmi−1 → ∞ as

i → ∞, H =
∑

n∈(0,nℓ]
pnℓ

→ ∞ as ℓ → ∞, H =
∑

k∈(0,kj ] pkj → ∞ as j → ∞,

then θ
′
i,ℓ,j = {(mi, nℓ, kj)} =

{(
QmiQnjQkk

)}
is a triple lacunary sequence. If the

assumptions Qr → ∞ as r → ∞, Qs → ∞ as s → ∞ and Qt → ∞ as t → ∞ may
be not enough to obtain the conditions Hi → ∞ as i→ ∞, Hℓ → ∞ as ℓ→ ∞ and

Hj → ∞ as j → ∞ respectively. For any lacunary sequences (mi) , (nℓ) and (kj) are
integers.
Throughout the paper, we assume that Qr = q11+q12+. . .+qrs → ∞ (r → ∞) , Qs =

q11 + q12 + . . .+ qrs → ∞ (s→ ∞) , Qt = q11 + q12 + . . .+ qrs → ∞ (t→ ∞) , such
that Hi = Qmi − Qmi−1 → ∞ as i → ∞, Hℓ = Qnℓ

− Qnℓ−1
→ ∞ as ℓ → ∞ and

Hj = Qkj −Qkj−1
→ ∞ as j → ∞.

Let Qmi,nℓ,kj = QmiQnℓ
Qkj ,Hiℓj = HiHℓHj ,

I
′
iℓj =

{
(m,n, k) : Qmi−1 < m < Qmi , Qnℓ−1

< n < Qnℓ
and Qkj−1

< k < Qkj

}
,

Vi =
Qmi
Qmi−1

, V ℓ =
Qnℓ
Qnℓ−1

and V j =
Qkj

Qkj−1
. and Viℓj = ViV ℓV j .

If we take qm = 1, qn = 1 and qk = 1 for all m,n and k then Hiℓj , Qiℓj , Viℓj and I
′
iℓj

reduce to hiℓj , qiℓj , viℓj and Iiℓj .
Let f be an Orlicz function and p = (pmnk) be any factorable triple sequence of

strictly positive real numbers, we define the following sequence spaces:[
χ3
R, θiℓj , q, f, p

]
= P − limi,ℓ,j→∞

1
Hi,ℓj

∑
i∈Iiℓj

∑
ℓ∈Iiℓj

∑
j∈Iiℓj qmqnqk [f ((m+ n+ k)! |xm+i,n+ℓ,k+j |)pmnk ] = 0, uniformly

in i, ℓ and j.

[
Λ3
R, θiℓj , q, f, p

]
=

x=(xmnk) : P−supi,ℓ,j
1

Hi,ℓj

∑
i∈Iiℓj

∑
ℓ∈Iiℓj

∑
j∈Iiℓj

qmqnqk

[f |xm+i,n+ℓ,k+j |pmnk ]<∞} ,

uniformly in i, ℓ and j.
Let f be an Orlicz function, p = pmnk be any factorable double sequence of strictly
positive real numbers and and qm, qn and qk be sequences of positive numbers and

Qr = q11 + · · · qrs, Qs = q11 · · · qrs and Qt = q11 · · · qrs,
If we choose qm = 1, qn = 1 and qk = 1 for all m,n and k, then we obtain the
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following sequence spaces.[
χ3
R, q, f, p

]
= P − limr,s,t→∞

1

QrQsQt

∑r
m=1

∑s
n=1

∑t
k=1 qmqnqk [f ((m+ n+ k)! |xm+i,n+ℓ,k+j |)pmnk ] = 0, uniformly

in i, ℓ and j.

[
Λ3
R, q, f, p

]
=

{
P − supr,s,t

1

QrQsQt

r∑
m=1

s∑
n=1

t∑
k=1

qmqnqk

[f ((m+ n+ k)! |xm+i,n+ℓ,k+j |)pmnk ] <∞} ,

uniformly in i, ℓ and j.

Definition 5 Let f be an Orlicz function and p = (pmnk) be any factorable triple
sequence of strictly positive real numbers, we define the following sequence space:
θi,ℓ,j = {(mi, nℓ, kj)} be a triple lacunary sequence

χ3
f

[
ACθi,ℓ,j , p

]
=

P − limi,ℓ,j
1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j[

f ((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k
]pmnk

= 0,
}
,

uniformly in i, ℓ and j.
We shall denote χ3

f

[
ACθi,ℓ,j , p

]
as χ3

[
ACθi,ℓ,j , p

]
respectively when pmnk = 1 for

all m,n and k If x is in χ3
[
ACθi,ℓ,j , p

]
, we shall say that x is almost lacunary χ3

strongly p−convergent with respect to the Orlicz function f . Also note if f (x) =
x, pmnk = 1 for all m,n and k then χ3

f

[
ACθi,ℓ,j , p

]
= χ3

[
ACθi,ℓ,j

]
which are defined

as follows:

χ3
[
ACθi,ℓ,j

]
=

P − limi,ℓ,j
1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j[

f ((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k
]
= 0,

}
,

uniformly in i, ℓ and j.
Again note if pmnk = 1 for all m,n and k then χ3

f

[
ACθi,ℓ,j , p

]
= χ3

f

[
ACθi,ℓ,j

]
, we

define

χ3
f

[
ACθi,ℓ,j , p

]
=

P − limi,ℓ,j
1

hiℓj

∑
m∈Ik,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j[

f ((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k
]pmnk

= 0,
}
,

uniformly in i, ℓ and j.
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Definition 6 Let f be an Orlicz function p = (pmnk) be any factorable triple se-
quence of strictly positive real numbers, we define the following sequence space:

χ3
f [p] =

{
P − limr,s,t→∞

1

rst

r∑
m=1

s∑
n=1

t∑
k=1[

f ((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k
]pmnk

= 0
}
,

uniformly in i, ℓ and j.
If we take f (x) = x, pmnk = 1 for all m,n and k then χ3

f [p] = χ3.

Definition 7 Let θi,ℓ,j be a triple lacunary sequence; the triple number sequence x

is Ŝθi,ℓ,j − p− convergent to 0 then

P − limi,ℓ,j
1

hi,ℓ,j
maxi,ℓ,j |{(m,n, k) ∈ Ii,ℓ,j :

f ((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k
}∣∣∣ = 0.

In this case we write Ŝθi,ℓ,j − lim (f (m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k = 0.

3 Main Results

Theorem 1 If f be any Orlicz function and a bounded factorable positive triple
number sequence pmnk then χ3

f

[
ACθi,ℓ,j , P

]
is linear space

Proof: The proof is easy. Theorefore, we omit the proof.

Theorem 2 For any Orlicz function f, we have χ3
[
ACθi,ℓ,j

]
⊂ χ3

f

[
ACθi,ℓ,j

]
Proof: Let x ∈ χ3

[
ACθi,ℓ,j

]
so that for each i, ℓ and j

χ3
[
ACθi,ℓ,j

]
={

limi,ℓ,j
1
hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]
= 0
}
.

Since f is continuous at zero, for ε > 0 and choose δ with 0 < δ < 1 such that
f (t) < ϵ for every t with 0 ≤ t ≤ δ. We obtain the following,
1
hiℓj

(hiℓjϵ) +

1
hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j and |xm+i,n+ℓ,k+j−0|>δ f

[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]
1
hiℓj

(hiℓjϵ) +
1
hiℓj

Kδ−1f (2)hiℓj χ
3
[
ACθi,ℓ,j

]
.

Hence i, ℓ and j goes to infinity, we are granted x ∈ χ3
f

[
ACθi,ℓ,j

]
.

Theorem 3 Let θi,ℓ,j = {mi, nℓ, kj} be a triple lacunary sequence with liminfiqi >
1, liminfℓqℓ > 1 and liminfjqj > 1 then for any Orlicz function f, χ3

f (P ) ⊂
χ3
f

(
ACθi,ℓ,j , P

)
Proof: Suppose liminfiqi > 1, liminfℓqℓ > 1 and liminfjqj > 1 then there exists
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δ > 0 such that qi > 1+δ, qℓ > 1+δ and qj > 1+δ This implies hi
mi

≥ δ
1+δ ,

hℓ
nℓ

≥ δ
1+δ

and
hj
kj

≥ δ
1+δ Then for x ∈ χ3

f (P ) , we can write for each r, s and u.

Bi,ℓ,j =
1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

=

1

hiℓj

mi∑
m=1

nℓ∑
n=1

kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

−

1

hiℓj

mi−1∑
m=1

nℓ−1∑
n=1

ki−1∑
k=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

−

1

hiℓj

mi∑
m=mi−1+1

nℓ−1∑
n=1

kj−1∑
k=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

−

1

hiℓj

kj∑
k=kj+1

nℓ∑
n=nℓ−1+1

mk−1∑
m=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

=
minℓkj
hiℓj

 1

minℓkj

mi∑
m=1

nℓ∑
n=1

kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

−

mk−1nℓ−1kj−1
hiℓj

 1

mi−1nℓ−1kj − 1

mi−1∑
m=1

nℓ−1∑
n=1

kj−1∑
k=1

f
[
((m+n+k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk



−kj−1

hiℓj

 1

kj−1

mi∑
m=mi−1+1

nℓ−1∑
n=1

kj∑
k=1

f
[
((m+n+k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk



−nℓ−1

hiℓj

 1

nℓ−1

mk∑
m=mk−1+1

nℓ−1∑
n=1

kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

−

mk−1

hiℓj

 1

mk−1

kj∑
k=1

nℓ∑
n=nℓ−1+1

mk−1∑
m=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

 .

Since x ∈ χ3
f (P ) the last three terms tend to zero uniformly in m,n, k in the sense,

thus, for each r, s and u

Bi,ℓ,j =
minℓkj
hiℓj

 1

minℓkj

mi∑
m=1

nℓ∑
n=1

kj∑
k=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

−
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mi−1nℓ−1kj−1

hiℓj

 1

mi−1nℓ−1kj−1

mi−1∑
m=1

nℓ−1∑
n=1

kj−1∑
k=1

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk
)
+O (1) .

Since hiℓj = minℓkj −mi−1nℓ−1kj−1 we are granted for each i, ℓ and j the following

minℓkj
hiℓj

≤ 1+δ
δ and

mi−1nℓ−1kj−1

hiℓj
≤ 1

δ .

The terms(
1

minℓkj

∑mi
m=1

∑nℓ
n=1

∑kj
k=1 f

[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk
)
and(

1
mi−1nℓ−1kj−1

∑mi−1

m=1

∑nℓ−1

n=1

∑kj−1

k=1 f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk
)
are

both gai sequences for all i, ℓ and j. Thus Biℓj is a gai sequence for each i, ℓ and j.
Hence x ∈ χ3

f

(
ACθi,ℓ,j , P

)
.

Theorem 4 Let θi,ℓ,j = {m,n, k} be a triple lacunary sequence with limsupηqη <∞
and limsupiqi <∞ then for any Orlicz function f, χ3

f

(
ACθi,ℓ,j , P

)
⊂ χ3

f (p) .
Proof. Since limsupiqi < ∞ and limsupiqi < ∞ there exists H > 0 such that
qi < H, qℓ < H and qj < H for all i, ℓ and j. Let x ∈ χ3

f

(
ACθi,ℓ,j , P

)
. Also there

exist i0 > 0, ℓ0 > 0 and j0 > 0 such that for every a ≥ i0 b ≥ ℓ0 and c ≥ j0 and i, ℓ
and j.

A
′
abc =

1
habc

∑
m∈Ia,b,c

∑
n∈Ia,b,c

∑
k∈Ia,b,c f

[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

→
0asm, n, k → ∞.

Let G
′
= max

{
A

′
a,b,c : 1 ≤ a ≤ i0, 1 ≤ b ≤ ℓ0 and 1 ≤ c ≤ j0

}
and p, q and t be

such that mi−1 < p ≤ mi, nℓ−1 < q ≤ nℓ and mj−1 < t ≤ mj . Thus we obtain the
following:
1
pqt

∑p
m=1

∑q
n=1

∑t
k=1

[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

≤ 1
mi−1nℓ−1kj−1

∑mi
m=1

∑nℓ
n=1

∑kj
k=1

[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

≤ 1
mi−1nℓ−1kj−1

∑i
a=1

∑ℓ
b=1

∑j
c=1(∑

m∈Ia,b,c
∑

n∈Ia,b,c
∑

k∈Ia,b,c

[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk
)

= 1
mi−1nℓ−1kj−1

∑i0
a=1

∑ℓ0
b=1

∑j0
c=1 ha,b,cA

′
a,b,c +

1
mk−1nℓ−1kj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j) ha,b,cA

′
a,b,c

≤ G
′

mi−1nℓ−1kj−1

∑i0
a=1

∑ℓ0
b=1

∑j0
c=1 ha,b,c

+ 1
mi−1nℓ−1kj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤ȷ) ha,b,cA

′
a,b,c

≤ G
′
mi0

nℓ0
kj0 i0ℓ0j0

mi−1nℓ−1kj−1
+ 1

mi−1nℓ−1jj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j) ha,b,cA

′
a,b,c

≤
G

′
mi0

nℓ0kj0
i0ℓ0j0

mi−1nℓ−1kj−1
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+
(
supa≥i0

∪
b≥ℓ0

∪
c≥j0A

′
a,b,c

)
1

mi−1nℓ−1kj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j) ha,b,c

≤
G

′
mi0

nℓ0kj0
i0ℓ0j0

mi−1nℓ−1kj−1
+ ϵ

mi−1nℓ−1kj−1

∑
(i0<a≤i)

∪
(ℓ0<b≤ℓ)

∪
(j0<c≤j) ha,b,c

≤
G

′
mi0

nℓ0kj0
i0ℓ0j0

mi−1nℓ−1kj−1
+ ϵH3.

Since mi, nℓ and kj both approaches infinity as both p, q and t approaches in-
finity, it follows that

1

pqt

p∑
m=1

q∑
n=1

t∑
k=1

[
((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k

]pmnk

= 0,

uniformly in i, ℓ and j.
Hence x ∈ χ3

f (P ) .

Theorem 5 Let θi,ℓ,j be a triple lacunary sequence then

(i) (xmnk)
P→ χ3

(
Ŝθi,ℓ,j

)
(ii)
(
ACθi,ℓ,j

)
is a proper subset of

(
Ŝθi,ℓ,j

)
(iii) If x ∈ Λ3 and (xmnk)

P→ χ3
(
Ŝθi,ℓ,j

)
then (xmnk)

P→ χ3
(
ACθi,ℓ,j

)
(iv) χ3

(
Ŝθi,ℓ,j

)∩
Λ3 = χ3

[
ACθi,,ℓ,j

]∩
Λ3.

Proof. (i) Since for all i, ℓ and j∣∣∣{(m,n, k) ∈ Ii,ℓ,j : ((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k
}
= 0
∣∣∣ ≤∑

m∈Ii,ℓ,j
∑

n∈Ii,ℓ,j
∑

k∈Ii,ℓ,j and |xm+i,n+ℓ,k+j|=0 ((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k

≤
∑

m∈Ii,ℓ,j
∑

n∈Ii,ℓ,j
∑

k∈Ii,ℓ,j ((m+ n)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k , for all i, ℓ and j

P− limi,ℓ,j
1
hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j ((m+n+k)! |xm+i,n+ℓ,k+j−0|)1/m+n+k=0

This implies that for all i, ℓ and j

P − limi,ℓ,j
1

hi,ℓ,j
|{(m,n, k) ∈ Ii,ℓ,j :

((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k = 0
}∣∣∣ = 0.

(ii)let x = (xmnk) be defined as follows:

(xmnk) =



1 2 3 ...
[ 4
√
hi,ℓ,j]

m+n+k

(m+n+k)! 0 . . .

1 2 3 ...
[ 4
√
hi,ℓ,j]

m+n+k

(m+n+k)! 0 . . .
...

1 2 3 ...
[ 4
√
hi,ℓ,j]

m+n+k

(m+n+k)! 0 . . .
...
0 0 0 ...0 0 . . .
...


;
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Here x is an trible sequence and for all i, ℓ and j

P−limi,ℓ,j
1

hk,ℓ,j

∣∣∣{(m,n, k) ∈ Ii,ℓ,j : ((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k = 0
}∣∣∣ =

P − limi,ℓ,j
1

hi,ℓ,j

(
(m+n+k)! [ 4

√
hi,ℓ,j]

m+n+k

(m+n+k)!

)1/m+n+k

= 0.

Therefore (xmnk)
P→ χ3

(
Ŝθi,ℓ,j

)
. Also

P − limi,ℓ,j
1
hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j ((m+ n+ k)! |xm+i,n+ℓ,k+j |)1/m+n+k =

P− 1
2

(
limi,ℓ,j

1
hi,ℓ,j

(
(m+n+k)![ 4

√
hi,ℓ,j]

m+n+k
[ 4
√
hi,ℓ,j]

m+n+k
[ 4
√
hi,ℓ,j]

m+n+k

(m+n+k)!

)1/m+n+k

+1

)
= 1

2 .

Therefore (xmnk)
P
̸→ χ3

(
ACθi,ℓ,j

)
.

(iii) If x ∈ Λ3 and (xmnk)
P→ χ3

(
Ŝθi,ℓ,j

)
then (xmnk)

P→ χ3
(
ACθi,ℓ,j

)
.

Suppose x ∈ Λ3 then for all i, ℓ and j, ((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k ≤M
for all m,n, k. Also for given ϵ > 0 and i, ℓ and j large for all i, ℓ and j we obtain
the following:

1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j

((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k =

1

hiℓj

∑
m∈Ik,ℓ

∑
n∈Ii,ℓ,j

∑
k∈Ik,ℓ,j and |xm+i,n+ℓ,k+j|≥0

((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k+

1

hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j and |xm+i,n+ℓ,k+j|≤0

((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k

≤ M

hiℓj

∣∣∣{(m,n, k) ∈ Ii,ℓ,j : ((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k
}
= 0
∣∣∣+ ϵ.

Therefore x ∈ Λ3 and (xmnk)
P→ χ3

(
Ŝθi,ℓ,j

)
then (xmnk)

P→ χ3
(
ACθi,ℓ,j

)
.

(iv)χ3
(
Ŝθi,ℓ,j

)∩
Λ3 = χ3

[
ACθi,ℓ,j

]∩
Λ3. follows from (i),(ii) and (iii).

Theorem 6 If f be any Orlicz function then χ3
f

[
ACθi,ℓ,j

]
/∈ χ3

(
Ŝθi,ℓ,j

)
Proof: Let x ∈ χ3

f

[
ACθi,ℓ,j

]
, for all i, ℓ and j.

Therefore we have
1
hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j f

[
((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k

]
≥

1
hiℓj

∑
m∈Ii,ℓ,j

∑
n∈Ii,ℓ,j

∑
k∈Ii,ℓ,j and |xm+r,n+s,k+u|=0

f
[
((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k

]
>
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1
hiℓj

f (0)
∣∣∣{(m,n, k) ∈ Ii,ℓ,j : ((m+ n+ k)! |xm+i,n+ℓ,k+j − 0|)1/m+n+k

}
= 0
∣∣∣ .

Hence x /∈ χ3
(
Ŝθi,ℓ,j

)
.

4 Conclusions and Future Work

We introduced Riesz almost lacunary χ3 sequence spaces strong P− convergent to
zero with respect to an Orlicz function and study statistical convergence of Riesz
almost lacunary χ3 sequence spaces, also some inclusion theorems. For the ref-
erence sections, consider the following introduction described the main results are
motivating the research.
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Section of a summability method

Ioan Ţincu

Abstract

In this paper, section of a summability method are determined, using ran-
dom variables which follow Pascal′s distribution law and the central limit the-
orem.

2010 Mathematics Subject Classification: 40C05,40G15.
Key words and phrases: summability, Pascal, Toeplitz, Lyapunov, random

variables, the regular transformation.

1 Introduction

Let S = ∥an,k∥n,k∈N be a real elements matrix. A sequence (sn)n∈N is said to be

A-summable to the value s ∈ R if each of the series σn =

n∑
k=0

an,ksk, n = 0, 1, ...

is convergent and if σn → s for n → ∞. The method A is called regular if each
convergent sequence is A-summable to its limit.

Theorem 1 (Toeplitz) (see[2]) The summation method A is regular if and only if:

(1) lim
n→∞

an,k = 0, for every k natural,

(2) lim
n→∞

n∑
k=0

an,k = 1,

(3)

n∑
k=0

|an,k| ≤M,

for every n natural, M being a constant independent of n.

105
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Note:

• M(f) represents the expectation of a random variable f ,

• D2(f) represents the variance (dispersion) of a random variable f ,

• K represents the set of real sequences,

• [x] represents the wolle part of x.

Theorem 2 (Lyapunov) (see[3]) Let (fn)n∈N a sequence of independent random
variables. Let us suppose that Mk = M(fk), D

2
k = D2(fk), Hk = 3

√
M(|fk −Mk|3)

exists for every k natural. Note with Sn =
√
D2

1 + ...+D2
n, Kn = 3

√
H3

1 + ...+H3
n,

βn = f1 + ...+ fn, β
∗
n =

βn −M(βn)

D(βn)
and with Fn,β∗

n
(x) the distribution function of

variable β∗n. Thus, if

(4) lim
n→∞

Kn

Sn
= 0, we have

(5) lim
n→∞

Fn,β∗
n
(x) =

1√
2π

∫ x

−∞
e−t

2/2dt = Φ(x), for every x natural.

Function Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt represents the standard normal distribution

function.

Theorem 2 is also true in the case when the independent random variables have
the same distribution.

Theorem 3 (see[1]) If a sequence of characteristic functions f1(t), f2(t), ..., fn(t), ...
converge to the continuous functions f(t), then the sequence of distribution functions
F1(x), F2(x), ..., Fn(x), ... converges weakly to some distribution function F (x)Φ [by

virtue of the direct limit theorem f(t) =

∫
eitxdF (x)].

If the random variables η1 and η2 verify the condition η2 = a · η1 + b with a, b
real, then

i) the characteristic functions verify

(6) φη2(t) = eitbφη1(at),

ii) the distribution functions of these random variable verify

(7) Fη2(x) = Fη1

(
x− b

a

)
, for a > 0.
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Definition 1 We say that the discrete random variable X follows Pascal′s law if it

has the distribution

(
k

P (n, k)

)
k=0,1,2,...

, where P (n, k) =

(
n+ k − 1

k

)
pnqk, n ∈ N∗,

p ∈ (0, 1), q = 1− p (see[2]).
For n = 1, the discrete random variable follows the geometric law, that is it has

the distribution (
k

p · qk

)
k=0,1,2,...

, p ∈ (0, 1), q = 1− p.

2 Principal results

We consider the formula

(8)
1

(1− z)α
=

∞∑
k=0

(α)k
k!

zk, |z| < 1, α ∈ R+,

(α)k = α(α+ 1) · ... · (α+ k − 1)with the convention (α)0 = 1.

If we put α = nλ, n ∈ N, λ ∈ R+ we obtain

(9)
1

(1− z)nλ
=

∞∑
k=0

(nλ)k
k!

zk, |z| < 1.

We define the transformation T1(n, ·, λ, z) : K → K,

(10) T1(n, s;λ, z) =

∞∑
k=0

c1(n, k;λ, z)sk,

where

c1(n, k;λ, z) =
(nλ)k
k!

zk(1− z)nλ, z ∈ (0, 1), n ∈ N, λ ∈ R+.

Proposition 1 The transformation T1(n, s;λ, z) is a regular.

Proof. We check the conditions (1), (2) and (3) from theorem one:

lim
n→∞

c1(n, k;λ, z) = lim
n→∞

(nλ)k
k!

zk(1− z)nλ

=
zk

k!
lim
n→∞

[nλ(nλ+ 1)...(nλ+ k − 1)(1− z)nλ]

=
zk

k!
lim
n→∞

[
λ

(
λ+

1

n

)
...

(
λ+

k − 1

n

)
· nk

(1− z)−nλ

]
= 0;

lim
n→∞

∞∑
k=0

c1(n, k;λ, z) = 1, (see[9]);
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∞∑
k=0

|c1(n, k;λ, z)| =
∞∑
k=0

c1(n, k;λ, z) = 1 =M.

Next, we will determine a finite section of the regular transformation T1(n, s;λ, z).
Let the independent random variable f1, f2, ..., fn which follows the geometric law
and βn = f1 + f2 + ... + fn. The random variable βn follows Pascal′s law and the
distribution function is
Fn,β : R → R,

(11) F (x) = P (X < x) =

∞∑
k=0

P (n, k)Θ(x− k)

where P (n, k) is defined in Definition 1.1 and Θ(x) =

{
1, x ≥ 0
0, x < 0

.

Since M(βn) =
nq

p
and D2(βn) =

nq

p2
, from (11) and from the relations between

the distribution functions, we obtain the fact the distribution function of the normed

random variable β∗n =
βn −M(βn)

D(βn)
has the form

(12) Fn,β∗ =

∞∑
k=0

P (n, k)Θ

(
x

√
nq

p
+
nq

√
nq

p2
− k

)

=

[
x

√
nq

p
−
nq

√
nq

p2

]
∑
k=0

(
n+ k − 1

k

)
pnqk = Φ(x) ([6]).

We defined the transformation T2(n, ·; p, x) : K → K,

(13) T2(n, s; p, x) =

[
x

√
nq

p
+
nq

√
nq

p2

]
∑
k=0

c2(n, k; p, x) · sk

where

c2(n, k; p, x) =
1

Φ(x)
·
(
n+ k − 1

k

)
pnqk, x ≥ 0, q = 1− p, p ∈ (0, 1).

Theorem 4 The transformation T2(n, s; p, x) is regular.

Proof. We check the conditions from theorem Toeplitz:

(14) lim
n→∞

c2(n, k; p, x) =
qk

Φ(x)
lim
n→∞

(
n+ k − 1

k

)
pn
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=
qk

Φ(x)
lim
n→∞

(n+ k − 1)(n+ k − 2)...n

k!
pn

=
qk

Φ(x)k!
lim
n→∞

(
1 +

k − 1

n

)(
1 +

k − 2

n

)
...

(
1 +

1

n

)
nkpn = 0;

From (12) we have

(15)

[
x

√
nq

p
+
nq

√
nq

p2

]
∑
k=0

c2(n, k; p, x) = 1;

(16)

[
x

√
nq

p
+
nq

√
nq

p2

]
∑
k=0

|c2(n, k; p, x)| =

[
x

√
nq

p
+
nq

√
nq

p2

]
∑
k=0

c2(n, k; p, x) = 1.

In (13), let x = 0, q = z and n = nλ, λ > 0; it follows that

(17) T2(nλ, s; z, 0) = 2(1− z)nλ ·

[
nλz

√
nλz

(1− z)2

]
∑
k=0

(
nλ+ k − 1

k

)
zksk, z ∈ (0, 1).

Remark 1 The transformation
1

2
T2(nλ; z, 0) denotes a finite section of the trans-

formation T1(n, s;λ, z), (see (10)).

Particular case: In (10) and (14), let z =
1

2
; the following representations

T1(n, s;λ,
1

2
) =

1

2nλ

∞∑
k=0

(nλ)k
k!

· sk
2k

=
1

2nλ

∞∑
k=0

(
nλ+ k − 1

k

)
sk
2k
,

T2(nλ, s;
1

2
, 0) =

2

2nλ

[nλ
√
2nλ]∑

k=0

(
nλ+ k − 1

k

)
sk
2k
.

In (13) let x = 0,

T2(n, s; p, 0) = 2

[nq
√
nq]

p2∑
k=0

(
n+ k − 1

k

)
pnqksk, q = 1− p, p ∈ (0, 1).

For p = q =
1

2
, we have

lim
n→∞

1

2n

[n
√
2n]∑

k=0

(
n+ k − 1

k

)
1

2k
=

1

2
.
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