A note on a diophantine equation

József Sándor

Abstract

We prove, without using Catalan’s equation that, the only solution in positive integers of the equation $5^a - 2^b = 1$ is $a = 1, b = 2$. This shows a completely elementary method of solution of an equation from [1].

2010 Mathematics Subject Classification: 11D61.
Key words and phrases: diophantine equations; congruences.

Introduction

1. In paper [1] it is shown that all solutions to the equation

\begin{equation}
2^x + 5^y = z^2
\end{equation}

in nonnegative integers are provided by $x = 3, y = 0, z = 3$ and $x = 2, y = 1, z = 3$.

\footnote{Received 16 November, 2009
Accepted for publication (in revised form) 20 August, 2010}
When \(x \geq 1, \ y \geq 1 \), in the proof offered in [1] we are led to the following equation

\[
5^y - 2^{k+1} = 1.
\]

Then, the author uses the strong conjecture of Catalan, and proved recently by P. Mihăilescu ([2]), that the only solution to the equation

\[
a^b - c^d = 1
\]

in positive integers \(\geq 2 \) is offered by \(a = 3, \ b = 2, \ c = 2, \ d = 3 \). Since \(k + 1 \geq 2 \), clearly, we cannot have \(y \geq 2 \). When \(y = 1 \), however, we get \(k = 1 \).

In what follows, we shall prove elementarily this fact (i.e., without using the theory of equation (3)).

2. The proof

First we prove that \(k + 1 \) is even. If \(k + 1 = b \) is odd, then \(2^b + 1 \) is divisible by \(2 + 1 = 3 \), which is impossible, as 3 doesn’t divide \(5^y \). Put \(b = 2B \). If \(B = 1 \), then we are done, as then \(y = 1 \), etc.

Let \(B > 1 \). Then we get the equation

\[
5^y - 4^B = 1.
\]

If \(y = 2A \) is even, then \(5^{2A} - 1 = 4^B \), and as \(5^{2A} - 1 \) is divisible by \(5^2 - 1 = 24 \), which is divisible by 3, we get a contradiction, as \(4^B \) cannot be divisible by 3. Thus \(y \) is odd; put \(y = 2A + 1 \). If \(A = 0 \), then \(y = 1 \); so we may suppose \(A \geq 1 \). Then (4) implies \(5 \cdot 5^{2A} = 4^B + 1 \).

As \(5 = 8 - 3, \ 5^{2A} = 25^A = (8 \cdot 3 + 1)^A \equiv 1(\mod 8) \), we get that

\[
5 \cdot 5^{2A} \equiv -3(\mod 8).
\]

On the other hand, if \(B \geq 2 \), clearly \(4^B + 1 \equiv 1(\mod 8) \). As

\[-3(\mod 8) \not\equiv 1(\mod 8),
\]

the contradiction follows.

When \(B = 1 \) we get \(5^{2A} = 1 \), which is impossible, since we have assumed \(A \geq 1 \).
References

József Sándor
Babeș–Bolyai University
Department of Mathematics
Str. Kogălniceanu Nr. 1, 400084 Cluj–Napoca, Romania
jsandor@math.ubbcluj.ro; jjsandor@hotmail.com