Strong convergence of a modified implicit iteration process for the finite family of ψ–uniformly pseudocontractive mappings in Banach spaces

Arif Rafiq

Abstract

The purpose of this paper is to establish the strong convergence of a implicit iteration process with errors to a common fixed point for a finite family of ψ–uniformly pseudocontractive and ψ–uniformly accretive mappings in real Banach spaces. The results presented in this paper extend and improve the corresponding results of Refs. [3, 7, 12]. The remark at the end is important.

2010 Mathematics Subject Classification: 47H10, 47H17, 54H25.

Key words and phrases: Implicit iteration process, ψ–uniformly pseudocontractive and ψ–uniformly accretive mappings, Common fixed point, Banach spaces.

Received 20 October, 2009
Accepted for publication (in revised form) 8 July, 2010
1 Introduction

Form now onward, we assume that E is a real Banach space and K be a nonempty convex subset of E. Let J denote the normalized duality mapping from E to 2^{E^*} defined by

$$J(x) = \{f^* \in E^* : \langle x, f^* \rangle = \|x\|^2 \text{ and } \|f^*\| = \|x\|\},$$

where E^* denotes the dual space of E and $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. We shall denote the single-valued duality map by j.

Let $\Psi := \{\psi : [0, \infty) \rightarrow [0, \infty) \text{ is a strictly increasing mapping such that } \psi(0) = 0\}$.

Definition 1 A mapping $T : K \rightarrow K$ is called ψ–uniformly pseudocontractive if there exist mapping $\psi \in \Psi$ and $j(x - y) \in J(x - y)$ such that

$$(1.1) \quad \langle Tx - Ty, j(x - y) \rangle \leq \|x - y\|^2 - \psi(\|x - y\|), \quad \forall x, y \in K.$$

Definition 2 A mapping $S : D(S) \subset E \rightarrow E$ is called ψ–uniformly accretive if there exist mapping $\psi \in \Psi$ and $j(x - y) \in J(x - y)$ such that

$$(1.2) \quad \langle Sx - Sy, j(x - y) \rangle \geq \psi(\|x - y\|), \quad \forall x, y \in E.$$

Remark 1 1. Taking $\psi(a) := \psi(a)a$, $\forall a \in [0, \infty)$, $(\psi \in \Psi)$, we get the usual definitions of ψ– pseudocontractive and ψ– accretive mappings.

2. Taking $\psi(a) := \gamma a^2; \gamma \in (0, 1), \forall a \in [0, \infty)$, $(\psi \in \Psi)$, we get the usual definitions of strongly pseudocontractive and strongly accretive mappings.

3. T is ψ–uniformly pseudocontractive iff $S = I - T$ is ψ–uniformly accretive.

It is known that T is strongly pseudocontractive if and only if $(I - T)$ is strongly accretive.
In 2001, Xu and Ori [12] introduced the following implicit iteration process for a finite family of nonexpansive mappings \(\{T_i : i \in I\} \) (here \(I = \{1, 2, ..., N\} \)), with \(\{\alpha_n\} \) a real sequence in \((0, 1)\), and an initial point \(x_0 \in K \):

\[
\begin{align*}
x_1 &= \alpha_1 x_0 + (1 - \alpha_1) T_1 x_1, \\
x_2 &= \alpha_2 x_1 + (1 - \alpha_2) T_2 x_2, \\
&\vdots \\
x_N &= \alpha_N x_{N-1} + (1 - \alpha_N) T_N x_N, \\
x_{N+1} &= \alpha_{N+1} x_N + (1 - \alpha_{N+1}) T_1 x_{N+1}, \\
&\vdots
\end{align*}
\]

which can written in the following compact form:

\[
(1.3) \quad x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n, \quad \forall n \geq 1,
\]

where \(T_n = T_{n(\text{mod} N)} \) (here the \(\text{mod} N \) function takes values in \(I \)). Xu and Ori proved the weak convergence of this process to a common fixed point of the finite family defined in a Hilbert space. They further remarked that it is yet unclear what assumptions on the mappings and/or the parameters \(\{\alpha_n\} \) are sufficient to guarantee the strong convergence of the sequence \(\{x_n\} \).

In [7], Osilike proved the following theorem.

Theorem 1 Let \(E \) be a real Banach space and \(K \) be a nonempty closed convex subset of \(E \). Let \(\{T_i : i \in I\} \) be \(N \) strictly pseudocontractive self-mappings of \(K \) with \(F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset \). Let \(\{\alpha_n\}_{n=1}^{\infty} \) be a real sequence satisfying the conditions:

- \((i) \) \(0 < \alpha_n < 1 \),
- \((ii) \) \(\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty \),
- \((iii) \) \(\sum_{n=1}^{\infty} (1 - \alpha_n)^2 < \infty \).
From arbitrary \(x_0 \in K \), define the sequence \(\{x_n\} \) by the implicit iteration process (1.3). Then \(\{x_n\} \) converges strongly to a common fixed point of the mappings \(\{T_i : i \in I\} \) if and only if \(\lim_{n \to \infty} d(x_n, F) = 0 \).

Definition 3 A normed space \(E \) is said to satisfy Opial’s condition if for any sequence \(\{x_n\} \) in \(E \), \(x_n \rightharpoonup x \) implies that \(\limsup_{n \to \infty} \|x_n - x\| < \limsup_{n \to \infty} \|x_n - y\| \) for all \(y \in E \) with \(y \neq x \).

In [3], Chen et al proved the following theorem.

Theorem 2 Let \(K \) be a nonempty closed convex subset of a \(q \)-uniformly smooth and \(p \)-uniformly convex Banach space \(E \) that has the Opial property. Let \(s \) be any element in \((0, 1) \) and let \(\{T_i\}_{i=1}^N \) be a finite family of strictly pseudocontractive self-maps of \(K \) such that \(\{T_i\}_{i=1}^N \), have at least one common fixed point. For any point \(x_0 \in K \) and any sequence \(\{\alpha_n\}_{n=1}^\infty \) in \((0, s) \), define the sequence \(\{x_n\} \) by the implicit iteration process (1.3). Then \(\{x_n\} \) converges weakly to a common fixed point of \(\{T_i\}_{i=1}^N \).

Inspired and motivated by the above said facts, we suggest the following implicit iteration process with errors and define the sequence \(\{x_n\} \) as follows

\[
(1.4) \quad x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n + u_n, \quad \forall n \geq 1,
\]

where \(T_n = T_n(\text{mod}\, N) \), \(\{\alpha_n\} \) is a sequence in \((0, 1) \) and \(\{u_n\} \) is a summable sequence in \(K \).

Clearly, this iteration process contains the process (1.3) as its special case.

The purpose of this paper is to study the strong convergence of the implicit iteration process (1.4) to a common fixed point for a finite family of \(\psi \)-uniformly pseudocontractive and \(\psi \)-uniformly accretive mappings in real Banach spaces. The results presented in this paper extend and improve the corresponding results of Refs. [3, 7, 12].
2 Main Results

The following lemma is now well known.

Lemma 3 Let $J : E \rightarrow 2^E$ be the normalized duality mapping. Then for any $x, y \in E$, we have

$$||x + y||^2 \leq ||x||^2 + 2 \langle y, j(x + y) \rangle, \forall (x + y) \in J(x + y).$$

Lemma 4 [5] Let $\{\theta_n\}$ be a sequence of nonnegative real numbers, $\{\lambda_n\}$ be a real sequence satisfying

$$0 \leq \lambda_n \leq 1, \sum_{n=0}^{\infty} \lambda_n = \infty$$

and let $\psi \in \Psi$. If there exists a positive integer n_0 such that

$$\theta_{n+1}^2 \leq \theta_n^2 - \lambda_n \psi(\theta_{n+1}) + \sigma_n,$$

for all $n \geq n_0$, with $\sigma_n \geq 0, \forall n \in \mathbb{N}$, and $\sigma_n = 0(\lambda_n)$, then $\lim_{n \rightarrow \infty} \theta_n = 0$.

Theorem 5 Let $\{T_1, T_2, ..., T_N\} : K \rightarrow K$ be $N, \psi-$uniformly pseudo-contractive mappings with $\{T_n x_n\}$ bounded and $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$. From arbitrary $x_0 \in K$, define the sequence $\{x_n\}$ by the implicit iteration process (1.4) satisfying $\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty$, $\lim_{n \rightarrow \infty} (1 - \alpha_n) = 0$ and $\|u_n\| = 0(1 - \alpha_n)$. Then $\{x_n\}$ converges strongly to a common fixed point of $\{T_1, T_2, ..., T_N\}$.

Proof. Since each T_i is $\psi-$uniformly pseudocontractive, we have from (1.1)

$$(2.1) \quad \langle T_i x - T_i y, j(x - y) \rangle \leq ||x - y||^2 - \psi(||x - y||), i = 1, 2, \cdots, N.$$

We know that the mappings $\{T_1, T_2, ..., T_N\}$ have a common fixed point in K, say w, then the fixed point set $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$ is nonempty.
We will show that w is the unique fixed point of F. Suppose there exists $q \in F(T_1)$ such that $w \neq q$ i.e., $\|w - q\| > 0$. Then

\[(AR) \quad \psi(\|w - q\|) > 0.\]

Since ψ is strictly increasing with $\psi(0) = 0$. Then, from the definition of $\psi-$uniformly pseudocontractive mapping,

\[\|w - q\|^2 = \langle w - q, J(w - q) \rangle = \langle T_1w - T_1q, J(w - q) \rangle \leq \|w - q\|^2 - \psi(\|w - q\|),\]

implies

\[\psi(\|w - q\|) \leq 0,\]

contradicting (AR), which implies the uniqueness. Hence $F(T_1) = \{w\}$.

Similarly we can prove that $F(T_i) = \{w\}; i = 2, 3, ..., N$. Thus $F = \{w\}$.

We set

\[M_1 = \|x_0 - w\| + \sup_{n \geq 0} \|T_nx_n - w\|,\]
\[M_2 = 1 + \sup_{n \geq 0} \|u_n\|.\]

Obviously $M_1, M_2 < \infty$. Let $M_3 = M_1 + M_2$.

It is clear that $\|x_0 - w\| \leq M_1 < M_3$. Let $\|x_{n-1} - w\| \leq M_1 < M_3$.

Next we will prove that $\|x_n - w\| \leq M_3$.

Consider

\[\|x_n - w\| = \|\alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n + u_n - w\| \]
\[= \|\alpha_n (x_{n-1} - w) + (1 - \alpha_n) (T_n x_n - w) + u_n\| \]
\[\leq \alpha_n \|x_{n-1} - w\| + (1 - \alpha_n) \|T_n x_n - w\| + \|u_n\| \]
\[\leq \alpha_n M_1 + (1 - \alpha_n) M_1 + M_2 \]
\[= M_1 + M_2 \]
\[= M_3.\]
So, from the above discussion, we conclude that the sequence \(\{x_n - w\} \) is bounded. Let \(M_4 = \sup_{n \geq 0} \|x_n - w\| \).

Denote \(M = M_3 + M_4 \). Obviously \(M < \infty \).

The real function \(f : [0, \infty) \to [0, \infty) \), defined by \(f(t) = t^2 \) is increasing and convex. For all \(\lambda \in [0, 1] \) and \(t_1, t_2 > 0 \) we have

\[
(1 - \lambda)t_1 + \lambda t_2^2 \leq (1 - \lambda)t_1^2 + \lambda t_2^2. \tag{2.2}
\]

Consider

\[
\|x_n - w\|^2 = \|\alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n + u_n - w\|^2 \\
= \|\alpha_n (x_{n-1} - w) + (1 - \alpha_n) (T_n x_n - w) + u_n\|^2 \\
\leq [\alpha_n \|x_{n-1} - w\| + (1 - \alpha_n) \|T_n x_n - w\| + \|u_n\|]^2 \\
\leq \alpha_n \|x_{n-1} - w\|^2 + (1 - \alpha_n) \|T_n x_n - w\|^2 + \|u_n\|^2 + 2M \|u_n\| \\
\leq \|x_{n-1} - w\|^2 + M^2 (1 - \alpha_n) + \|u_n\|^2 + 2M \|u_n\|. \tag{2.3}
\]

From lemma 1 and (1.4), we have

\[
\|x_n - w\|^2 = \|\alpha_n x_{n-1} + (1 - \alpha_n) T_n x_n + u_n - w\|^2 \\
= \|\alpha_n (x_{n-1} - w) + (1 - \alpha_n) (T_n x_n - w) + u_n\|^2 \\
\leq \alpha_n^2 \|x_{n-1} - w\|^2 + 2 (1 - \alpha_n) (T_n x_n - w, j(x_n - w)) \\
\quad + 2 \langle u_n, f(x_n - w) \rangle \\
\leq \alpha_n^2 \|x_{n-1} - w\|^2 + 2 (1 - \alpha_n) \|x_n - w\|^2 \\
\quad - 2 (1 - \alpha_n) \psi(\|x_n - w\|) + 2M \|u_n\|. \tag{2.4}
\]
Substituting (2.3) in (2.4), and with the help of \(\|u_n\| = 0(1 - \alpha_n) \) (implies \(\|u_n\| = (1 - \alpha_n) t_n; \ t_n \to 0 \) as \(n \to \infty \)) we get

\[
\|x_n - w\|^2 \leq [\alpha_n^2 + 2(1 - \alpha_n)] \|x_{n-1} - w\|^2 - 2(1 - \alpha_n) \psi(\|x_n - w\|)
+ 2M^2 (1 - \alpha_n)^2 + 2(1 - \alpha) \|u_n\|^2 + 4M(1 - \alpha) \|u_n\|
+ 2M \|u_n\|
= [1 + (1 - \alpha_n)^2] \|x_{n-1} - w\|^2 - 2(1 - \alpha_n) \psi(\|x_n - w\|)
+ 2M^2 (1 - \alpha_n)^2 + 2(1 - \alpha) \|u_n\|^2 + 2M[1 + 2(1 - \alpha)] \|u_n\|
\leq \|x_{n-1} - w\|^2 - 2(1 - \alpha_n) \psi(\|x_n - w\|) + 3M^2 (1 - \alpha_n)^2
+ 2(1 - \alpha) \|u_n\|^2 + 6M \|u_n\|
\leq \|x_{n-1} - w\|^2 - 2(1 - \alpha_n) \psi(\|x_n - w\|)
+ (1 - \alpha_n)[3M^2 (1 - \alpha_n) + 2(1 + 3M) t_n].
\]

(2.5)

Denote

\[
\theta_n = \|x_{n-1} - w\|,
\lambda_n = 2(1 - \alpha_n),
\sigma_n = (1 - \alpha_n)[3M^2 (1 - \alpha_n) + 2(1 + 3M) t_n].
\]

Condition \(\lim_{n \to \infty} (1 - \alpha_n) = 0 \) assures the existence of a rank \(n_0 \in \mathbb{N} \) such that \(\lambda_n = 2(1 - \alpha_n) \leq 1 \), for all \(n \geq n_0 \). Now with the help of \(\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty \), \(\lim_{n \to \infty} (1 - \alpha_n) = 0 \) and lemma 2, we obtain from (2.5) that

\[
\lim_{n \to \infty} \|x_n - w\| = 0,
\]

completing the proof.

Corollary 6 Let \(\{T_1, T_2, \ldots, T_N\} : K \to K \) be \(N \), \(\psi \)–uniformly pseudo-contractive mappings with \(\{T_n x_n\} \) bounded and \(F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset \). From arbitrary \(x_0 \in K \), define the sequence \(\{x_n\} \) by the implicit iteration process (1.3) satisfying \(\sum_{n=1}^{\infty} (1 - \alpha_n) = \infty \) and \(\lim_{n \to \infty} (1 - \alpha_n) = 0 \). Then \(\{x_n\} \) converges strongly to a common fixed point of \(\{T_1, T_2, \ldots, T_N\} \).
Remark 2 Theorem 3 extend and improve the theorems 1-2 in the following directions:

1) The strictly pseudocontractive mappings are replaced by the more general $\psi-$uniformly pseudocontractive and $\psi-$uniformly accretive mappings;

2) Theorem 3 holds in real Banach space whereas the results of theorem 2 are in q-uniformly smooth and p-uniformly convex Banach space;

3) We do not need the assumption $\lim_{n \to \infty} d(x_n, F)$ as in theorem 1;

4) Weak convergence in theorem 2 is replaced by the strong convergence in theorem 3;

5) One can easily see that if we take $\alpha_n = 1 - \frac{1}{\sqrt{n}}$, then $\sum (1 - \alpha_n) = \infty$, but $\sum (1 - \alpha_n)^2 = \infty$. Hence the conclusion of theorem 1 is not true in all cases.

References

Arif Rafiq
Lahore Leads University
Department of Mathematics
Lahore, Pakistan
e-mail: arafiq@gmail.com