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Piergiulio Corsini Dorin Andrica Malvina Baica

Detlef H. Mache Claudiu Kifor Vasile Berinde

Aldo Peretti Adrian Petruşel
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A curious synopsis on the Goldbach
conjecture, the friendly numbers, the

perfect numbers, the Mersenne composite
numbers and the Sophie Germain primes 1

Ikorong Anouk Gilbert Nemron

Abstract

The notion of a friendly number (or amicable number), (see

[2] or [10] or [18] or [19]) is based on the idea that a human friend

is a kind of alter ego. Indeed, Pythagoras wrote (see [18] or [19]):

A friend is the other I, such as are 220 and 284. These numbers

have a special mathematical property: each is equal to the sum of

the other’s proper divisors (divisors other than the number itself).

The proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55,

and 110, and they sum to 284; the proper divisors of 284 are 1,

2, 4, 71, and 142, and they sum to 220. So {220, 284} is called

a pair of friendly numbers [note {17296, 18416} is also a pair of

friendly numbers (see [18] or [19])]. More precisely, we say that a

number a′ is a friendly number or amicable number, if there exists

a number a′′ ̸= a′ such that {a′, a′′} is a pair of friendly numbers

[example. 220, 284, 17296 and 18416 are friendly numbers] . It is

trivial to see that a friendly number is a composite number (we
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6 I. A. G. Nemron

recall that a composite number is a non prime number. Primes are

well known (see [1] or [2] or [3] or [4]), and original characteriza-

tions of primes via divisibility is given in [15] and [16] and [17] ),
and the friendly numbers problem states that there are infinitely

many friendly numbers. Pythagoras saw perfection in any integer

that equaled the sum of all the other integers that divided evenly

into it (see [2] or [10] or [17] or [18] or [19]). The first perfect

number is 6. It’s evenly divisible by 1, 2, and 3, and it’s also

the sum of 1, 2, and 3, [note 28 and 496 and 33550336 are also

perfect numbers (see [18] or [19]) ]. It is immediate that a perfect

number is a composite number, and the perfect numbers problem

states that there are infinitely many perfect numbers. It is triv-

ial to see that an integer is perfect if and only if this integer is

self-amicable (perfect numbers are characterized via divisibility in

[15] and [17]). A Mersenne composite is a non prime number of

the form Mm = 2m − 1, where m is prime ( Mersenne composites

were characterized via divisibility in [15] and [17]). It is known

(see [2] or [3] or [4] or [10] or [18] or [19]) that M11 and M67

are Mersenne composites. A prime h is called a Sophie Germain

prime (see [10]), if both h and 2h + 1 are prime; the first few

Sophie Germain primes are 2, 3, 5, 11, 23, 29, 41, ..., and it is easy

to check that 233 is a Sophie Germain prime. Sophie Germain

primes are known for some integers > 233 ( For original charac-

terizations of Sophie Germain primes via divisibility, see [15] and

[17] ). The Sophie Germain primes problem asserts that there

are infinitely many Sophie Germain primes. That being said, in

this paper, we state a simple conjecture (Q.) , we generalize the

Fermat induction, and we use only the immediate part of the gen-

eralized Fermat induction to give a simple and detailed proof that

(Q.) is stronger than the Goldbach problem, the friendly numbers

problem, the perfect numbers problem, the Mersenne composites

problem and the Sophie Gernain primes problem; this helps us

to explain why it is natural and not surprising to conjecture that



A curious synopsis on the Goldbach conjecture ... 7

the friendly numbers problem, the perfect numbers problem, the

Mersenne composites problem, and the Sophie Germain primes

problem are simultaneously special cases of the Goldbach problem

( we recall (see [1] or [5] or [6] or [7] or [8] or [9] or [11] or [13] or

[14] )) that the Goldbach problem states that every even integer

e ≥ 4 is of the form e = p+ q, where (p, q) is a couple of prime(s).

2010 Mathematics Subject Classification: 11AXX, 03Bxx, 05A05.

Key words and phrases: goldbach, goldbachian, cache, Sophie

Germain primes, Mersenne composites, friendly numbers, perfect

numbers.

1 Prologue.

Briefly, the immediate part of the generalized Fermat induction is based

around the following simple definitions. Let n be an integer ≥ 2, we

say that c(n) is a cache of n, if c(n) is an integer of the form 0 ≤
c(n) < n [ Example.1 If n = 4, then c(n) is a cache of n if and only

if c(n) ∈ {0, 1, 2, 3} ]. Now, for every couple of integers (n, c(n)) such

that n ≥ 2 and 0 ≤ c(n) < n [ observe that c(n) is a cache of n], we

define c(n, 2) as follows: c(n, 2) = 1 if c(n) ≡ 1mod[2]; and c(n, 2) = 0

if c(n) ̸≡ 1mod[2]. It is immediate that c(n, 2) exists and is well defined,

since n ≥ 2 [Example.2 If n = 6, then c(n, 2) = 0 if c(n) ∈ {0, 2, 4} and

c(n, 2) = 1 if c(n) ∈ {1, 3, 5}]. In this paper, induction will be made on

n and c(n, 2) [ where n is an integer ≥ 2 and c(n) is a cache of n ].

2 Introduction and non-standard definitions.

Definitions.1. We say that e is goldbach, if e is an even integer ≥ 4

and is of the form e = p + q, where (p, q) is a couple of prime(s). The
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Goldbach problem states that every even integer e ≥ 4 is goldbach. We

say that e is goldbachian, if e is an even integer ≥ 4, and if every even

integer v with 4 ≤ v ≤ e is goldbach [ there is no confusion between

goldbach and goldbachian, since goldbachian clearly implies goldbach]. (
Example.3. 12 is golbachian [ indeed, 12 and 10 and 8 and 6 and 4

are goldbach (note 4 = 2 + 2, where 2 is prime; 6 = 3 + 3, where 3 is

prime; 8 = 5 + 3 where 3 and 5 are prime; 10 = 7 + 3, where 3 and 7

are prime, and 12 = 5 + 7, where 5 and 7 are prime); so 12 is an even

integer ≥ 4, and every even integer v of the form 4 ≤ v ≤ 12 is goldbach;

consequently 12 is goldbachian]. Since 12 is goldbachian, then it becomes

trivial to deduce that 10 and 8 and 6 and 4 are goldbachian. Example.4.

1000000 is goldbachian [ indeed, it known that every even integer v of

the form 4 ≤ v ≤ 1000000 is goldbach; so 1000000 is an even integer

≥ 4, and every even integer v of the form 4 ≤ v ≤ 1000000 is goldbach;

consequently 1000000 is goldbachian]. It is immediate to see that if d

is goldbachian and if d′ is an even integer of the form 4 ≤ d′ ≤ d, then

d′ is also goldbachian. Example.5. Let the Mersenne composite M11

(see Abstract and definitions); then 2M11 + 2 is goldbachian [ indeed

2M11+2 is an even integer such that 4 ≤ 2M11+2 ≤ 1000000; observing

that 1000000 is goldbachian (use Example.4), then it becomes immediate

to deduce that 2M11+2 is goldbachian (since 1000000 is goldbachian and

2M11 + 2 is an even integer such that 4 ≤ 2M11 + 2 ≤ 1000000) )].

Definitions.2. For every integer n ≥ 2, we define G ′(n), g′n ; H(n),

hn, hn.1 ; MC(n), cn, cn.1 ; A(n), an, an.1; D(n), dn, and dn.1 as fol-

lows: G ′(n) = {g′; 1 < g′ ≤ 2n, and g′ is goldbachian}, g′n = max
g′∈G′(n)

g′

; H(n) = {x; 1 < x < 2n and x is a SophieGermain prime }, hn =

2 max
h∈H(n)

h, and hn.1 = 4hhn
n [observing (see Abstract and Definitions)

that 233 is a Sophie Germain prime, then it becomes immediate to de-

duce that for every integer n ≥ 233, 233 ∈ H(n)] ; MC(n) = {x; 1 <
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x < 2n and x is aMersenne composite}, cn = 2 max
c∈MC(n)

c, and cn.1 = 4ccnn

[observing (seeAbstract and Definitions) thatM11 is a Mersenne com-

posite, then it becomes immediate to deduce that for every integer n ≥
M11,M11 ∈ MC(n)]; A(n) = {x; 1 < x < 2n and x is a friendly number },
an = 2 max

a∈A(n)
a, and an.1 = 4aann [observing (see Abstract and Defini-

tions) that 284 is a friendly number, then it becomes immediate to

deduce that for every integer n ≥ 284, 284 ∈ A(n)] ; D(n) = {x; 1 <
x < 2n and x is a perfect number}, dn = 2 max

d∈D(n)
d, and dn.1 = 4ddnn [ob-

serving (see Abstract and Definitions) that 496 is a perfect number,

then it becomes immediate to deduce that for every integer n ≥ 496,

496 ∈ D(n)].

Using the previous definitions, let us define:

Definition.3 (Fundamental.1). For every integer n ≥ 2, we put

Z(n.1) = {hn.1}
∪

{cn.1}
∪

{an.1}
∪

{dn.1},

where hn,1 and cn.1 and an.1 and dn.1 are introduced in Definitions.2.

From Definition.3 and Definitions.2, then the following two assertions

are immediate.

Assertion 1. Let n be an integer ≥ 2. Then:

(1.0) g′n+1 ≤ 2n+ 2.

(1.1) g′n+1 < 2n+ 2 if and only if g′n+1 = g′n.

(1.2) g′n+1 = 2n+ 2 if and only if 2n+ 2 is goldbachian.

(1.3) 2n+2 is goldbachian if and only if 2n is goldbachian and 2n+2 is

goldbach.

Assertion 2. Let n be an integer ≥ M11; consider zn.1 ∈ Z(n.1),

and look at zn [Example.6. If zn.1 = cn.1, then zn = cn and we are play-

ing with the Mersenne composites; if zn.1 = an.1, then zn = an and we

are playing with the friendly numbers; if zn.1 = dn,1, then zn = dn and we
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are playing with the perfect numbers; and if zn.1 = hn.1, then zn = hn and

we are playing with the Sophie Germain primes]. Then 232 < zn < zn.1,

and zn.1 > 233233 > M11 and zn−1.1 ≤ zn.1.

Now, using the previous definitions, let (Q.) be the following state-

ment:

(Q.): For every integer r ≥ M11, one and only one of the following

two properties w(Q.r) and x(Q.r) is satisfied.

w(Q.r): 2r + 2 is not goldbach.

x(Q.r): For every zr.1 ∈ Z(r.1), we have zr.1 > g′r+1.

We will see that if for every integer r ≥ M11 , property x(Q.r) of

statement (Q.) is satisfied, then the Sophie Germain primes problem,

the Mersenne composites problem, the friendly numbers problem, and the

perfect numbers problem are simultaneously special cases of the Goldbach

conjecture. It is easy to see that property x(Q.r) of statement (Q.) is

satisfied for large values of r ≥ M11. In this paper, using only the im-

mediate part of the generalized Fermat induction, we prove a Theorem

which immediately implies the following result (E.):

(E.): Suppose that statement (Q.) is true. Then the Sophie Germain

primes problem, the Mersenne composites problem, the friendly numbers

problem, the perfect numbers problem and the Goldbach problem are si-

multaneously true.

Result (E.) helps us to explain why it is natural and not surprising to

conjecture that the friendly numbers problem, the perfect numbers prob-

lem, the Mersenne composites problem, and the Sophie Germain primes

problem are simultaneously special cases of the Goldbach problem.
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3 The proof of Theorem which implies re-

sult (E.)

The following Theorem immediately implies result (E.)mentionned above.

Theorem 1. Let (n, c(n)) be a couple of integers such that n ≥ M11

and c(n) is a cache of n. Now suppose that statement (Q.) is true. We

have the following.

(0.) If c(n) ≡ 0mod[2], then 2n+ 2− c(n) is goldbachian.

(1.) If c(n) ≡ 1mod[2], then for every zn.1 ∈ Z(n.1), we have zn.1 >

1 + g′n+1 − c(n).

To prove Theorem 1, we use:

Lemma 1. Let (n, c(n)) be a couple of integers, where c(n) is a cache

of n. Suppose that n =M11. Then Theorem 1 is contented.

Proof. We have to distinguish two cases (namely case where c(n) is even

and case where c(n) is odd).

Case.0. c(n) is even . Clearly c(n) ≡ 0mod[2] and we have to show that

property (0.) of Theorem 1 is satisfied by the couple (n, c(n)). Recall

n =M11 and so 2n+2 = 2M11+2; observe that 2M11+2 is goldbachian

(by Example.5); in particular 2n+ 2− c(n) is goldbachian [use the defi-

nition of goldbachian (see Definitions.1) and note (by the previous) that

2n + 2 is goldbachian (since n = M11) and c(n) ∈ {0, 2, ....M11 − 1}].
So property (0.) of Theorem 1 is satisfied by the couple (n, c(n)), and

Theorem 1 is contented. Case.0 follows.

Case.1. c(n) is odd. Clearly c(n) ≡ 1mod[2] and we have to show that

property (1.) of Theorem 1 is satisfied by the couple (n, c(n)). Since

n =M11 and since 2M11+2 is goldbachian (by Example.5), clearly g′n+1 =

g′M11+1 = 2M11 + 2, 233 ∈ H(n), hn ≥ 233, hn.1 > 233233 > 2M11 + 2;

M11 ∈ MC(n), cn ≥ M11, cn.1 > MM11
11 > 2M11 + 2; 284 ∈ A(n),

an ≥ 284, an.1 > 284284 > 2M11 + 2; 496 ∈ D(n), dn ≥ 496, and dn.1 >

496496 > 2M11 + 2; clearly Z(n.1) = {hn.1, cn.1, an.1, dn.1}, and using the
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previous inequalities and the fact that g′n+1 = g′M11+1 = 2M11 + 2 , it be-

comes immediate to see that for every zn.1 ∈ Z(n.1), we have zn.1 > g′n+1;

in particular for every zn.1 ∈ Z(n.1), we have zn.1 > 1 + g′n+1 − c(n). So

property (1.) of Theorem.1 is satisfied by the couple (n, c(n)), and The-

orem.1 is contented. Case.1 follows, and Lemma 1 immediately follows.

Using Lemma 1 and the meaning of Theorem 1 and the fact c(n, 2) ∈
{0, 1}, then it becomes easy to see:

Remark 1. If Theorem 1 is false, then there exists (n, c(n)) such that

(n, c(n)) is a counter-example with n minimum and c(n, 2) maximum.

Consequence 1. (Application of Remark 1 and Lemma 1). Suppose

that Theorem 1 is false, and let (n, c(n)) be a counter-example with n

minimum and c(n, 2) maximum. Then n ≥M11 + 1.

Proof. Clearly n ≥M11 + 1 [use Lemma 1].

Remark 2. Suppose that Theorem 1 is false, and let (n, c(n)) be

a counter-example with n minimum and c(n, 2) maximum. We have

the following two simple properties (2.0) and (2.1).

(2.0) [The using of the minimality of n]. Put u = n−1, then, for every

zu.1 ∈ Z(u.1), we have zu.1 > g′u+1.

Indeed, let u = n−1 and let c(u) = j, where j ∈ {0, 1}; now consider

the couple (u, c(u)) [ note that u < n, u ≥ M11 (use Consequence 1),

c(u) is a cache of u, and the couple (u, c(u)) clearly exists ]. Then, by the

minimality of n, the couple (u, c(u)) is not a counter-example to Theo-

rem 1. Clearly c(u) ≡ jmod[2] [ because c(u) = j, where j ∈ {0, 1}], and
therefore property (j.) of Theorem 1 is satisfied by the couple (u, c(u))

[[ Example.7. If j = 0 (i.e. if c(u) = j = 0), then property (0.) of

Theorem 1 is satisfied by the couple (u, c(u)); so 2u + 2 is goldbachian.

Example.8. If j = 1 (i.e. if c(u) = j = 1), then property (1.) of Theo-

rem 1 is satisfied by the couple (u, c(u)); so, for every zu.1 ∈ Z(u.1), we
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have zu.1 > g′u+1]].

(2.1) [The using of the maximality of c(n, 2): the immediate part of

the generalized Fermat induction]. If c(n) ≡ 0mod[2], then for every

zn.1 ∈ Z(n.1), we have zn.1 > g′n+1.

Indeed, if c(n) ≡ 0mod[2]; clearly c(n, 2) = 0. Now let the couple

(n, y(n)) such that y(n) = 1. Clearly y(n) is a cache of n such that

y(n, 2) = 1 [ note that n ≥ M11 + 1 (use Consequence 1)]. Clearly

y(n, 2) > c(n, 2), where y(n) and c(n) are two caches of n [since

c(n, 2) = 0 and y(n, 2) = 1, by the previous]; then, by the maximal-

ity of c(n, 2), the couple (n, y(n)) is not a counter-example to Theorem

1 [because (n, c(n)) is a counter-example to Theorem 1 such that n is

minimum and c(n, 2) is maximum, and the couple (n, y(n)) is of the

form y(n, 2) > c(n, 2), where y(n) and c(n) are two caches]. Note that

y(n) ≡ 1mod[2] [since y(n) = 1, by the definition of y(n)] , and therefore,

property (1.) of Theorem 1 is satisfied by the couple (n, y(n)); so, for

every zn.1 ∈ Z(n.1), we have zn.1 > 1+g′n+1−y(n), and clearly, for every

zn.1 ∈ Z(n.1), we have zn.1 > g′n+1 [because y(n) = 1].

Consequence 2. (Application of Remark 2). Suppose that Theorem

1 is false, and let (n, c(n)) be a counter-example with n minimum and

c(n, 2) maximum. Then we have the following four properties.

(2.0) 2n is goldbachian [i.e. g′n = 2n].

(2.1) For every zn−1.1 ∈ Z(n− 1.1), we have zn−1.1 > g′n.

(2.2) For every zn.1 ∈ Z(n.1), we have zn.1 > g′n.

(2.3) If c(n) ≡ 0mod[2], then 2n+ 2 is goldbach.

Proof. Property (2.0) is easy [ indeed consider the couple (u, c(u)) such

that u = n − 1 and c(u) = 0, and apply Example.7 of property (2.0)

of Remark 2 ]; property (2.1) is also easy [ indeed consider the couple

(u, c(u)) such that u = n − 1 and c(u) = 1, and apply Example.8 of

property (2.0) of Remark 2 ]; and property (2.2) is an immediate conse-

quence of property (2.1) via Assertion 2 [ indeed, note that zn−1.1 ≤ zn.1,
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by using Assertion 2 ]. Now to prove Consequence 2 it suffices to show

property (2.3). Fact: 2n + 2 is goldbach. Indeed, observing [ by us-

ing property (2.1) of Remark 2] that for every zn.1 ∈ Z(n.1), we have

zn.1 > g′n+1, clearly property x(Q.n) of statement (Q.) is satisfied, and

recalling that statement (Q.) is true, then we immediately deduce that

property w(Q.n) of statement (Q.) is not satisfied; therefore 2n + 2 is

goldbach.

Proof of Theorem 1. We reason by reduction to absurd. Suppose

that Theorem 1 is false and let (n, c(n)) be a counter-example with n

minimum and c(n, 2) maximum [such a couple exists, by Remark.1 ].

Then we observe the following.

Observation.1.0. c(n) ̸≡ 0mod[2].

Otherwise,

c(n) ≡ 0mod[2] (1 ),

and clearly

2n+ 2− c(n) is not goldbachian (2 )

[indeed note c(n) ≡ 0mod[2] [by congruence (1)], and in particular,

property (0.) of Theorem 1 is not satisfied by the couple (n, c(n)); so

2n+ 2− c(n) is not goldbachian]. (2) immediately implies that

2n+ 2 is not goldbachian (3 )

[ indeed, recalling that c(n) is a cache of n such that c(n) ≡ 0mod[2]

[by congruence (1)], clearly c(n) ≥ 0 and 2n + 2 − c(n) ≥ 4 [note that

n ≥M11 + 1, by Consequence 1]; now using the previous and the defini-

tion of goldbachian via (2), then we immediately deduce that 2n + 2 is

not goldbachian]. Now we have the following two simple Facts.

Fact.1.0.0. g′n+1 = g′n. Indeed, observing [via (3) ] that 2n + 2 is
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not goldbachian, clearly g′n+1 < 2n + 2 [use the definition of g′n+1 via

the definition of g′n, and observe (by the previous) that 2n + 2 is not

goldbachian] and property (1.1) of Assertion 1 implies that g′n+1 = g′n.

Fact.1.0.1. 2n+ 2 is not goldbach. Otherwise, observing [via property

(2.0) of Consequence 2 ] that 2n is goldbachian, then, using the previ-

ous, it immediately follows that 2n+2 is goldbach and 2n is goldbachian;

consequently 2n+ 2 is goldbachian [use the fact that 2n+ 2 is goldbach

and 2n is goldbachian and apply property (1.3) of Assertion 1], and this

contradicts (3). The Fact.1.0.1 follows.

These two simple Facts made, observing [by Fact.1.0.1] that 2n + 2

is not goldbach, clearly property w(Q.n) of statement (Q.) is satisfied,

and recalling that statement (Q.) is true, then we immediately deduce

that property x(Q.n) of statement (Q.) is not satisfied; therefore

there exists zn.1 ∈ Z(n.1) such that zn.1 ≤ g′n+1 (4 ).

Now using Fact.1.0.0 , then (4) immediately implies that there exists

zn.1 ∈ Z(n.1) such that zn.1 ≤ g′n, and this contradicts property (2.2) of

Consequence 2. Observation.1.0 follows.

Observation.1.0 implies that

c(n) ≡ 1mod[2] (5 ),

and clearly

there exists zn.1 ∈ Z(n.1) such that zn.1 ≤ g′n+1 (6 )

[ indeed note c(n) ≡ 1mod[2] (by congruence (5)), and in particular,

property (1.) of Theorem 1 is not satisfied by the couple (n, c(n)); so

there exists zn.1 ∈ Z(n.1) such that zn.1 ≤ 1 + g′n+1 − c(n), and con-

sequently, there exists zn.1 ∈ Z(n.1) such that zn.1 ≤ g′n+1, because

c(n) ≥ 1 (since c(n) ≡ 1mod[2] [by congruence (5)], and c(n) is a cache

of n) ]. (6) clearly says that property x(Q.n) of statement (Q.) is not
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satisfied, and recalling that statement (Q.) is true, then we immediately

deduce that property w(Q.n) of statement (Q.) is satisfied; therefore

2n+ 2 is not goldbach (7 ).

(7) immediately implies that g′n+1 < 2n+ 2; now using property (1.1) of

Assertion 1 and the previous inequality, we immediately deduce that

g′n+1 = g′n (8 ).

Now using equality (8), then (6) clearly says that there exists zn.1 ∈
Z(n.1) such that zn.1 ≤ g′n, and this contradicts property (2.2) of Con-

sequence 2. Theorem 1 follows.

Remark 3. Note that to prove Theorem 1, we consider a couple

(n, c(n)) such that (n, c(n)) is a counter-example with n minimum and

c(n, 2) maximum. In properties (2.0),(2.1), and (2.2) of Consequence

2 (via property (2.0) of Remark 2), the minimality of n is used; and in

property (2.3) of Consequence 2 (via property (2.1) of Remark 2), the

maximality of c(n, 2) is used. Consequence 2 helps us to give a simple

and detailed proof of Theorem 1.

Corollary 1. Suppose that statement (Q.) is true. Then we have the

following four properties.

(1.0) For every integer n ≥ 1, 2n+2 is goldbachian [i.e. g′n+1 = 2n+2].

(1.1) The Goldbach conjecture is true.

(1.2) For every integer n ≥ M11, and for every zn.1 ∈ Z(n.1), we have

zn.1 > 2n+ 2.

(1.3) The Sophie Germain primes, the Mersenne composite numbers, the

friendly numbers and the perfect numbers are all infinite.

Proof. (1.0). It is immediate if n ∈ {1, 2, ...,M11} (since 2M11 + 2 is

goldbachian, by using Example.5 given in Definitions.1). If n ≥M11+1,
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consider the couple (n, c(n)) with c(n) = 0. The couple (n, c(n)) is of

the form 0 ≤ c(n) < n, where n ≥ M11, c(n) ≡ 0mod[2], and c(n) is a

cache of n. Then property (0.) of Theorem 1 is satisfied by the couple

(n, c(n)). So 2n+2 is goldbachian [because c(n) = 0 ], and consequently

g′n+1 = 2n+ 2.

(1.1). Indeed, the Goldbach conjecture immediately follows, by using

property (1.0).

(1.2). Let the couple (n, c(n)) be such that c(n) = 1. The couple (n, c(n))

is of the form 0 ≤ c(n) < n, where n ≥M11, c(n) ≡ 1mod[2], and c(n) is

a cache of n. Then property (1.) of Theorem 1 is satisfied by the cou-

ple (n, c(n)). So, for every zn.1 ∈ Z(n.1), we have zn.1 > g′n+1 [because

c(n) = 1]; now observing [by property (1.0)] that g′n+1 = 2n+2, then, we

immediately deduce that for every zn.1 ∈ Z(n.1), we have zn.1 > 2n+ 2.

(1.3). Indeed, the Sophie Germain primes, the Mersenne composite num-

bers, the friendly numbers and the perfect numbers are all infinite, by

using property (1.2) and the definition of Z(n.1) (see Definition.3 for the

meaning of Z(n.1)).

Using property (1.1) and property (1.3) of Corollary 1, then the fol-

lowing result (E.) becomes immediate.

Result (E.). Suppose that statement (Q.) is true. Then, the Gold-

bach conjecture is true, and moreover, the Sophie Germain primes, the

Mersenne composite numbers, the friendly numbers and the perfect num-

bers are all infinite.

Conjecture.1. Statement (Q.) is true.

4 Epilogue.

To conjecture that the Sophie Germain primes problem, the Mersenne

composite numbers problem, the friendly numbers problem and the per-

fect numbers problem are consequences of the Goldbach conjecture is not

surprising. Indeed, let (Q’.) be the following statement:
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(Q’.): For every integer r ≥ M11, at most one of the following two

properties w(Q’.r) and x(Q’.r) is true.

w(Q’.r): 2r + 2 is not goldbach.

x(P’.r): For every zr.1 ∈ Z(r.1), we have zr.1 > g′r+1.

Note that statement (Q’.), somewhere, resembles to statement (Q.).

More precisely, statement (Q.) implies statement (Q’.) [ Proof. In par-

ticular, the Goldbach conjecture is true [use property (1.1) of Corollary

1]; consequently, statement (Q’.) is true [use definition of statement

(Q’.) and the previous] ].

Conjecture.2. Statement (Q.) and statement (Q’.) are equivalent.

Conjecture.2. implies that the Sophie Germain primes problem, the

Mersenne composite numbers problem, the friendly numbers problem

and the perfect numbers problem are consequences of the Goldbach con-

jecture .

Proof. Suppose that conjecture.2 is true. If the Goldbach conjecture is

true, clearly statement (Q’.) is true; observing that statement (Q’.) and

statement (Q.) are equivalent, then (Q.) is true, and result (E.) implies

that the Sophie Germain primes, the Mersenne composite numbers, the

friendly numbers and the perfect numbers are all infinite.

Conjecture.3. Suppose that statement (Q’.) is true. Then the Gold-

bach conjecture is true, and moreover, the Sophie Germain primes, the

Mersenne composite numbers, the friendly numbers and the perfect num-

bers are all infinite.

Conjecture.3. immediately implies that the Sophie Germain primes

problem, the Mersenne composite numbers problem, the friendly num-

bers problem and the perfect numbers problem are consequences of the

Goldbach conjecture.

Proof. Suppose that conjecture.3 is true. If the Goldbach conjecture is

true, clearly statement (Q’.) is true, and in particular the Sophie Ger-
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main primes, the Mersenne composite numbers, the friendly numbers and

the perfect numbers are all infinite.

Conjecture.4. For every integer r ≥ M11, property x(Q’.r) of state-

ment (Q’.) is true [note that property x(Q’.r) of statement (Q’.) is

exactly property x(Q.r) of statement (Q.); moreover, it is immediate to

see that property x(Q’.r) of statement (Q’.) is satisfied for large values

of r ≥M11].

Conjecture.4. also implies that the Sophie Germain primes problem,

the Mersenne composite numbers problem, the friendly numbers prob-

lem and the perfect numbers problem are consequences of the Goldbach

conjecture.

Proof. Suppose that conjecture.4 is true. If the Goldbach conjecture is

true, clearly, g′n+1 = 2n+ 2, and so for every zn.1 ∈ Z(n.1), we have

zn.1 > g′n+1 > 2n (9 ).

Observing that (9) is true for every integer n ≥M11, then in particu-

lar, it results that the Sophie Germain primes, the Mersenne composite

numbers, the friendly numbers and the perfect numbers are all infinite.

Now, using conjecture.2 and conjecture.3 and conjecture.4 , it be-

comes natural and not surprising to conjecture the following:

Conjecture.5. The Sophie Germain primes problem, the Mersenne com-

posite numbers problem, the friendly numbers problem and the perfect

numbers problem are consequences of the Goldbach conjecture. More

precisely, the Sophie Germain primes problem, the Mersenne composite

numbers problem, the friendly numbers problem and the perfect numbers

problem are protected by the umbrella of Goldbach.

Conjecture.6. Let (n, b(n)) be a couple of integers such that n ≥ M11

and 0 ≤ b(n) < n. We have the following.
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(0.) If b(n) ≡ 0mod[4]; then 2n+ 2− b(n) is goldbachian.

(1.) If b(n) ≡ 1mod[4]; then hn.1 > 1+ g′n+1 − b(n) and cn.1 > 1+ g′n+1 −
b(n).

(2.) If b(n) ≡ 2mod[4]; then an.1 > 2 + g′n+1 − b(n).

(3.) If b(n) ≡ 3mod[4]; then dn.1 > 3 + g′n+1 − b(n).

It is easy to see that conjecture.6 simultaneously implies that: not

only the Goldbach conjecture is true, but the Sophie Germain primes,

the Mersenne composite numbers, the friendly numbers and the perfect

numbers are all infinite, and to attack this conjecture, we must consider

the generalized Fermat induction.
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An investigation of Kaprekar operation on
six-digit numbers computational approach 1

Anwar Ayyad

Abstract

In this paper we investigate Kaprekar operation when it is

carried out on six-digit numbers (not having all digits the same).

We prove the operation do one of three things. It will terminate

with the number 549945 upon the first iteration, terminate with

the number 631764 within the first four iterations, or goes into a

seven-element loop within the first fourteen iterations.

2010 Mathematics Subject Classification: 11Y35.

Key words and phrases: Six-digit, number.

1 Introduction

Let n a six-digit number (not having all digits the same), let uvwxyz be

the number obtained by writing the digits of n in descending order, and

let D1= uvwxyz - zyxwvu.

1Received 13 August, 2008

Accepted for publication (in revised form) 20 May, 2009

23



24 A. Ayyad

For D1 let abcdef, the number obtained by writing the digits of D1 in

descending order, and let D2 = abcdef - fedcba. When this operation

continue, it called Kaprekar operation.

In this paper we investigate what happens when this operation is carried

out on a six-digit number n.

2 Lemmas and Theorems

We start with the following very simple but important lemma.

Lemma 1 For six-digit number n, if uvwxyz is the number obtained by

writing the digits of n in descending order, and D1 = uvwxyz - zyxwvu is

the number obtained after the first iteration of Kaprekar operation, then

D1 = 99999(u - v) +9990(v - y) + 900(w - x).

Proof.

Now,

uvwxyz = 100000u + 10000v + 1000w + 100x + 10y + z

and

zyxwvu = 100000z + 10000y + 1000x + 100w + 10v + u

hence

D1 = 99999(u - z) + 9990(v - y) + 900(w - x).

The importance of this simple lemma, is that when applying Kaprekar

operation on a number n, then the number obtained after the first iter-

ation does not depends on the numerical value of n, but rather on the

three differences u - z, v - y and w - x, where uvwxyz is the number

obtained by writing digits of n in descending order. This suggests for us

to classify the numbers based on these three differences.
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Lemma 2 Let A be the set of all six-digit numbers (not having all digits

the same). For n, m belongs to A, let n related to m, (n ∼ m) iff u -z =

ú - ź, v - y = v́ - ý and w - x = ẃ - x́, where uvwxyz and úv́ẃx́úź, the two

numbers obtained by writing the digits of n and m in descending order

respectively then the relation (∼) is an equivalence relation on A.

We shall write the equivalence classes of this relation on the form

[a, b, c], where [a, b, c] represents all numbers n ∈ A with u- z= a, v - y

= b and w- x = c. That is if n belongs to the class [a, b, c], then D1 in

Lemma (1) given by D1 = 99999(a) + 9990(b) + 900(c).

Theorem 1 The equivalence relation (∼) has 219 equivalence classes.

Proof.

Since z ≤ y ≤ x ≤ w ≤ v ≤ u, then 0 ≤ w− x ≤ v− y ≤ u− z. That

is in any class [a, b, c], we have 0 ≤ c ≤ b, 0 ≤ b ≤ a and 0 ≤ a ≤ 9, but

since u ̸= z, then 1 ≤ a ≤ 9. Therefore number of equivalence classes N

is given by

N =
∑9

a=1

∑a
b=0

∑b
c=0 1

=
∑9

a=1

∑a
b=0 b+ 1

=
∑9

a=1(1 + 2 + 3 + · · ·+ a+ (a+ 1))

=
∑9

a=1
(a+1)(a+2)

2
= 219.

Here is a list of the equivalence classes

[1,1,1],[1,1,0],[1,0,0]

[2,2,2],[2,2,1],[2,2,0],[2,1,1],[2,1,0],[2,0,0]

[3,3,3],[3,3,2],[3,3,1],[3,3,0],[3,2,2],[3,2,1],[3,2,0],[3,1,1],[3,1,0],[3,0,0]

[4,4,4],[4,4,3],[4,4,2],[4,4,1],[4,4,0],[4,3,3],[4,3,2],[4,3,1],[4,3,0],[4,2,2]

[4,2,1],[4,2,0],[4,1,1],[4,1,0],[4,0,0],[5,5,5],[5,5,4],[5,5,3],[5,5,2],[5,5,1]

[5,5,0],[5,4,4],[5,4,3],[5,4,2],[5,4,1],[5,4,0],[5,3,3],[5,3,2],[5,3,1],[5,3,0]

[5,2,2],[5,2,1],[5,2,0],[5,1,1],[5,1,0],[5,0,0],[6,6,6],[6,6,5],[6,6,4],[6,6,3]

[6,6,2],[6,6,1],[6,6,0],[6,5,5],[6,5,4],[6,5,3],[6,5,2],[6,5,1],[6,5,0],[6,4,4]
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[6,4,3],[6,4,2],[6,4,1],[6,4,0],[6,3,3],[6,3,2],[6,3,1],[6,3,0],[6,2,2],[6,2,1]

[6,2,0],[6,1,1],[6,1,0],[6,0,0],[7,7,7],[7,7,6],[7,7,5],[7,7,4],[7,7,3],[7,7,2]

[7,7,1],[7,7,0],[7,6,6],[7,6,5],[7,6,4],[7,6,3],[7,6,2],[7,6,1],[7,6,0],[7,5,5]

[7,5,4],[7,5,3],[7,5,2],[7,5,1],[7,5,0],[7,4,4],[7,4,3],[7,4,2],[7,4,1],[7,4,0]

[7,3,3],[7,3,2],[7,3,1],[7,3,0],[7,2,2],[7,2,1],[7,2,0],[7,1,1],[7,1,0],[7,0,0]

[8,8,8],[8,8,7],[8,8,6],[8,8,5],[8,8,4],[8,8,3],[8,8,2],[8,8,1],[8,8,0],[8,7,7]

[8,7,6],[8,7,5],[8,7,4],[8,7,3],[8,7,2],[8,7,1],[8,7,0],[8,6,6],[8,6,5],[8,6,4]

[8,6,3],[8,6,2],[8,6,1],[8,6,0],[8,5,5],[8,5,4],[8,5,3],[8,5,2],[8,5,1],[8,5,0]

[8,4,4],[8,4,3],[8,4,2],[8,4,1],[8,4,0],[8,3,3],[8,3,2],[8,3,1],[8,3,0],[8,2,2]

[8,2,1],[8,2,0],[8,1,1],[8,1,0],[8,0,0],[9,9,9],[9,9,8],[9,9,7],[9,9,6],[9,9,5]

[9,9,4],[9,9,3],[9,9,2],[9,9,1],[9,9,0],[9,8,8],[9,8,7],[9,8,6],[9,8,5],[9,8,4]

[9,8,3],[9,8,2],[9,8,1],[9,8,0],[9,7,7],[9,7,6],[9,7,5],[9,7,4],[9,7,3],[9,7,2]

[9,7,1],[9,7,0],[9,6,6],[9,6,5],[9,6,4],[9,6,3],[9,6,2],[9,6,1],[9,6,0],[9,5,5]

[9,5,4],[9,5,3],[9,5,2],[9,5,1],[9,5,0],[9,4,4],[9,4,3],[9,4,2],[9,4,1],[9,4,0]

[9,3,3],[9,3,2],[9,3,1],[9,3,0],[9,2,2],[9,2,1],[9,2,0],[9,1,1],[9,1,0],[9,0,0]

Upon the investigation of Kaprekar operation when it is carried out, we

find out the 219 classes, divided into three different categories as follow:

C1: Classes whose elements terminates with the number 949945 upon

the first iteration, and this category consists of the single class [5,5,0].

C2: Classes whose elements terminates with the number 631764 within

the first four iterations, and this category consists of the seventeen classes

[6,3,2], [4,3,2], [6,6,2], [8,6,6], [8,6,4], [4,3,3], [6,6,3], [6,3,3], [7,6,6], [7,6,4],

[7,6,0], [7,4,0], [9,6,0], [9,4,0], [8,8,7], [8,8,5], [8,8,3].

C3: This category consists of all the other 201 classes and the ele-

ments in these classes reach the number 851742 within the first fourteen

iterations then they goes into a loop of seven elements.

Theorem 2 The elements of the class [5, 5, 0] terminate with the number

549945 upon the first iteration.

Proof.
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If n ∈ [5, 5, 0] then D1 = 99999(5) + 9990(5) = 549945. And since

D1 = 549945 belongs to the class [5,5,0], then the operation terminate

by this number.

Theorem 3 The elements of the classes in the second category terminate

with the number 631764 within the first four iterations.

Proof.

We divide the classes in this category into four families in this way

F1 = {[6, 3, 2]}.
F2 = {[4, 3, 2], [6, 6, 2], [8, 6, 6], [8, 6, 4]}.
F3 = {[4, 3, 3], [6, 6, 3], [6, 3, 3], [7, 6, 6], [7, 6, 4], [7, 6, 0], [7, 4, 0],

[9, 6, 0], [9, 4, 0]}.
F4 = {[8, 8, 7], [8, 8, 5], [8, 8, 3]}.
Now if class of a number n is in F1, then

D1 = 99999(a) + 9990(b) + 900(c)

= 99999(6) + 9990(3) + 900(2) = 631764.

And since 631764 belongs to the class [6,3,2], then the operation termi-

nates upon the first iteration.

If n has class in F2, then

D1 = 99999(a) + 9990(b) + 900(c)

= 431766, 661734, 865332 or 863532.

Thus, the class of D1 is [6,3,2]. And since [6,3,2] belongs to F1, then

D1 terminate with the number 631764 on the first iteration, and hence

n terminates with the same number in the second iteration.

If n has class in F3, then

D1=99999(a) + 9990(b) + 900(c)

=432666, 662634, 632664, 765333, 763533, 759933,

739953, 959931or 939951.
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Thus the class of D1 is [4,3,2],[6,6,2] or [8,6,4]. And since the class of

D1 belongs to F2, then the operation terminates with the number 631764

on the third iteration.

Finally, if n has class in F4, then D1 = 886212,884412 or 882612.

The class of D1 = [7,6,4] or [7,6,0]. And since the class of D1 belongs to

F3 then the operation terminate with the number 631764 in the fourth

iteration.

Theorem 4 The elements of the classes in the third category reaches the

number 851742 within the first fourteen iterations, then they runs in a

loop of seven numbers.

Proof.

Similar to Theorem (2) we divide the classes into families, in such a way

that if n has class in Fi, then D1 has class in Fi−1. These families are

given as follow:

F1 = {[8,5,2]}.
F2 = {[6,2,1], [4,2,1], [9,7,6], [9,7,4]}.
F3 = {[8,5,4], [6,4,3], [6,5,2], [6,5,3], [4,4,3], [4,4,2], [7,5,4], [6,4,2], [7,4,4],

[8,4,4]}.
F4 = {[9,7,7], [8,6,3], [8,7,4], [7,5,0], [8,7,6], [3,3,2], [3,2,1], [9,7,3], [4,2,2],

[8,5,0], [6,2,2], [7,7,1], [7,6,2], [7,3,2], [7,2,1], [8,3,3]}.
F5 = {[1,1,1], [8,6,1], [9,8,1], [3,1,1], [6,3,0], [2,1,1], [4,3,0], [9,6,1], [5,2,1],

[7,1,1], [8,8,6], [8,8,4], [8,8,1], [8,3,1], [8,1,1], [9,8,7], [9,8,2], [9,8,8],

[9,8,3], [9,7,5], [9,6,2], [9,3,2], [9,3,1], [9,1,1]}.
F6 = {[8,4,1], [1,1,0], [6,5,4], [9,5,2], [8,6,5], [5,3,3], [7,1,0][4,4,4], [8,5,1],

[4,0,0], [5,5,5], [5,3,2],[6,4,4], [7,6,5], [7,1,0], [7,0,0], [9,9,9], [9,9,6],

[9,9,4], [9,9,0], [9,7,1], [9,4,2], [9,2,1], [9,1,0]}.
F7 = {[7,5,1], [8,7,3], [4,1,0], [2,2,1], [8,7,1], [3,3,3], [8,2,1], [3,2,2], [7,6,3],

[7,7,2], [4,2,0], [6,1,0],[7,4,1], [9,4,3], [6,2,0], [7,3,3], [7,2,2], [8,7,7],

[9,7,2], [9,5,3], [9,5,1], [9,4,1], [9,2,2]}.
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F8 = {[9,7,0], [9,5,5], [2,2,0], [6,4,1], [8,6,0], [4,4,1], [6,5,1], [8,3,0], [5,5,3],
[5,5,2], [5,4,3], [5,4,2], [5,3,0], [8,4,2], [8,7,0], [5,1,0], [8,8,0], [8,5,5],

[8,4,0], [8,2,0], [9,5,4], [9,4,4], [9,3,0]}
F9 = {[8,1,0], [2,2,2], [2,1,0], [8,4,3], [3,2,0], [7,2,0], [4,4,0], [5,3,1], [8,7,2],

[6,4,0], [6,5,0], [5,2,0], [5,1,1], [6,6,0], [7,7,7], [7,7, 6], [7,7,4], [7,7,3],

[7,5,2], [7,4,2], [8,5,3], [8,2,2], [9,8,5], [9,6,5], [9,5,0]}.
F10 = {[9,0,0], [2,0,0], [3,3,1], [7,6,1], [3,0,0], [7,5,3], [4,1,1], [5,5,4], [5,5,1],

[5,4,4], [5,4,1], [5,4,0], [5,2,2], [6,6,5], [6,5,5], [6,1,1], [7,4,3], [7,3,1],

[8,7,5], [8,0,0], [9,8,6], [9,8,4], [8,6,3], [9,5,5], [9,3,3]}.
F11 = {[1,0,0], [3,3,0], [8,3,2], [5,0,0], [6,6,6], [6,6,4], [6,0,0], [7,7,5], [7,7,0],

[7,3,0], [8,6,2], [9,9,8], [9,9,7], [9,9,3], [9,9,2]}.
F12 = {[4,3,1], [6,6,1], [6,3,1], [8,8,8], [8,8,2], [9,9,1], [9,6,6], [9,6,4]}.
F13 = {[9,8,0], [9,2,0]}.
F14 = {[9,9,5]}
Now if class of n in F1 , then

D1 = 99999(a) + 9990(b) + 900(c)

= 99999(8) + 9990(5) + 900(2) = 851742.

Then n reach the number 851742 in the first iteration.

If n has class in F2, then

D1 = 99999(a) + 9990(b) + 900(c)

= 620874, 420876, 975321or 975321.

Then the class of D1 is [8,5,2]. And since class of D1 belongs F1, then

D1 reach the number 851742 in the first iteration, and hence n reach the

number 851742 in the second iteration.

If n has class in F3, then D1 = 853542, 642654, 651744, 652644,442656,

441756, 753543, 641754, 743533, or 843552. The class of D1 is [6,2,1] or

[4,2,1]. And since class of D1 belongs to F2, then the number n reach

the number 851742 in the third iteration.
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If we continue in this fashion we will find if n has class in Fi , then

D1 has class in Fi−1, and hence n reach the number 851742 in the i−th

iteration.

To emphasize this point we make the final check on F13 and F14. If n

has class in F13 then,

D1 = 99999(a) + 9990(b) + 900(c)

= 979911or 919971.

Class of D1 is [8,8,2] belongs to F12.

In case n has class in F14, then D1 = 99999(9)+9990(9)+900(5)=994401.

Class of D1 is [9,8,0] belongs to F13 .

Once the elements reaches the number 851742 they start running in the

following loop of seven elements.

851742 → 750843 → 840852 → 860832 → 862632 → 642654 →
420878 → 851742.
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Abstract

In this paper using the Dziok-Srivastava [4] operator, we in-

troduce a subclass of the class H of complex valued Harmonic

univalent functions f = h + ḡ, where h is the analytic part and

g is the co-analytic part of f in |z| < 1. Coefficient bounds, ex-

treme points, inclusion results and closure under integral operator

for this class are obtained.
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1 Introduction

Harmonic mappings have found applications in many diverse fields such

as engineering, aerodynamics and other branches of applied Mathematics.

Harmonic mappings in a domain D ⊆ C are univalent complex-valued

harmonic functions f = u + iv where both u and v are real harmonic.

The important work of Clunie and Sheil-Small [2] on the class consisting

of complex-valued harmonic orientation preserving univalent functions f

defined on the open unit disk U formed the basis for several investigations

on different subclasses of harmonic univalent functions.

In any simply-connected domain D, it is known that [2] we can write

f = h + ḡ, where h and g are analytic in D. We call h the analytic

part and g the co-analytic part of f . A necessary and sufficient condition

for f to be locally univalent and orientation preserving in D is that

|h′(z)| > |g′(z)| in D [2].

Denote by H the family of harmonic functions

(1) f = h+ ḡ

which are univalent and orientation preserving in the open unit disk

U = {z : |z| < 1} and f is normalized by f(0) = h(0) = fz(0) − 1 = 0.

Thus, for f = h+ ḡ ∈ H the analytic functions h and g are given by

h(z) = z +
∞∑

m=2

amz
m, g(z) =

∞∑
m=1

bmz
m.

Hence

(2) f(z) = z +
∞∑

m=2

amz
m +

∞∑
m=1

bmzm, |b1| < 1

We note that the family H reduces to the well known class S of

normalized univalent functions if the co-analytic part of f is identically

zero, that is g ≡ 0.
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For complex numbers α1, . . . , αp and β1, . . . , βq (βj ̸= 0,−1, . . . ; j =

1, 2, . . . , q) the generalized hypergeometric function [8] pFq(z) is defined

by

(3) pFq(z) ≡ pFq(α1, . . . , αp; β1, . . . , βq; z) =
∞∑

m=0

(α1)m . . . (αp)m
(β1)m . . . (βq)m

zm

m!

(p ≤ q + 1; p, q ∈ N0 = N ∪ {0}; z ∈ U),

where N denotes the set of all positive integers and (a)m is the Pochham-

mer symbol defined by

(4) (a)m =

1, m = 0,

a(a+ 1)(a+ 2) . . . (a+m− 1), m ∈ N.

Dziok and Srivastava [4] introduced an operator in their study of an-

alytic functions associated with generalized hypergeometric functions.

This Dziok-Srivastava operator is known to include many well-known

operators as special cases.

Let H(α1, . . . , αp; β1, . . . , βq) : A→ A be a linear operator defined by

[(H(α1, . . . , αp; β1, . . . , βq))(ϕ)](z)=z pFq(α1, α2,. . . , αp;β1, β2, . . . ,βq; z)∗ϕ(z)

= z +
∞∑

m=2

Γmamz
m(5)

where

(6) Γm =
(α1)m−1 . . . (αp)m−1

(β1)m−1 . . . (βq)m−1

1

m− 1!

and α1, . . . , αp; β1, . . . , βq are positive real numbers, such that p ≤ q + 1;

p, q ∈ N ∪ {0}, and (a)m is the familiar Pochhammer symbol.

The linear operator H(α1, . . . , αp; β1, . . . , βq) or Hp
q [α1, β1] in short,

is the Dziok-Srivastava operator ([4] & [12]), which includes several well

known operators.
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The Dziok-Srivastava operator when extended to the harmonic func-

tion f = h+ ḡ is defined by

(7) Hp
q [α1, β1]f(z) = Hp

q [α1, β1]h(z) +Hp
q [α1, β1]g(z)

Denote by VH the subclass of H consisting of functions of the form

f = h+ ḡ, where

(8) h(z) = z +
∞∑

m=2

|am|zm, g(z) =
∞∑

m=1

|bm|zm, |b1| < 1

Motivated by earlier works of [1, 3, 6, 7, 10, 11] on harmonic functions,

we introduce here a new subclass RH([α1, β1], α, β) of VH using Dziok-

Srivastava operator extended to harmonic functions.

We denote by RH([α1, β1], α, β), the subclass of VH, consisting of func-

tions of the form (8) satisfying the condition

Re

 α

(
Hp

q [α1, β1]h(z) +Hp
q [α1, β1]g(z)

z

)
+(Hp

q [α1, β1]h(z))
′ + (Hp

q [α1, β1]g(z))
′ − α

 < β

where α ≥ 0, 1 < β ≤ 2.

For p = q + 1, α2 = β1, . . . , αp = βq, α1 = 1, α = 0 the class

RH([α1, β1], α, β) reduces to the class RH(β) studied in [3]. Further

if the co-analytic part of f = h + ḡ is zero that is g ≡ 0, the class

RH([α1, β1], α, β) reduces to the class studied in [13].

In this paper extreme points, inclusion results and closure under in-

tegral operator for the class RH([α1, β1], α, β) are obtained.

2 Main Results

Theorem 1. A function f of the form (8) is in RH([α1, β1], α, β) if and

only if

(9)
∞∑

m=2

(α+m)Γm|am|+
∞∑

m=1

(α+m)Γm|bm| ≤ β − 1
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Proof. Let
∞∑

m=2

(α +m)Γm|am|+
∞∑

m=1

(α +m)Γm|bm| ≤ β − 1.

It suffices to prove that

∣∣∣∣∣∣∣∣∣∣∣∣∣

α

(
Hp

q [α1, β1]h(z) +Hp
q [α1, β1]g(z)

z

)
+(Hp

q [α1, β1]h(z))
′ + (Hp

q [α1, β1]g(z))
′ − α− 1

α

(
Hp

q [α1, β1]h(z) +Hp
q [α1, β1]g(z)

z

)
+(Hp

q [α1, β1]h(z))
′ + (Hp

q [α1, β1]g(z))
′ − α− (2β − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
< 1, z ∈ U.

we have

∣∣∣∣∣∣∣∣∣∣∣∣∣

α

(
Hp

q [α1, β1]h(z) +Hp
q [α1, β1]g(z)

z

)
+(Hp

q [α1, β1]h(z))
′ + (Hp

q [α1, β1]g(z))
′ − α− 1

α

(
Hp

q [α1, β1]h(z) +Hp
q [α1, β1]g(z)

z

)
+(Hp

q [α1, β1]h(z))
′ + (Hp

q [α1, β1]g(z))
′ − α− (2β − 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

∞∑
m=2

(α +m)Γm|am|zm−1 +
∞∑

m=1

(α +m)Γm|bm|zm−1

∞∑
m=2

(α +m)Γm|am|zm−1 +
∞∑

m=1

(α +m)Γm|bm|zm−1 + 1− (2β − 1)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

∞∑
m=2

(α+m)Γm|am|zm−1 +
∞∑

m=1

(α +m)Γm|bm|zm−1

∞∑
m=2

(α +m)Γm|am|zm−1 +
∞∑

m=1

(α +m)Γm|bm|zm−1 − 2(β − 1)

∣∣∣∣∣∣∣∣∣∣
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≤

∣∣∣∣∣∣∣∣∣∣

∞∑
m=2

(α +m)Γm|am|zm−1 +
∞∑

m=1

(α +m)Γm|bm|zm−1

2(β − 1)−
∞∑

m=2

(α +m)Γm|am|zm−1 −
∞∑

m=1

(α +m)Γm|bm|zm−1

∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣

∞∑
m=2

(α +m)Γm|am|+
∞∑

m=1

(α +m)Γm|bm|

2(β − 1)−
∞∑

m=2

(α +m)Γm|am| −
∞∑

m=1

(α +m)Γm|bm|

∣∣∣∣∣∣∣∣∣∣
which is bounded above by 1, by hypothesis and the sufficient part is

proved.

Conversely, suppose that

Re

 α

(
Hp

q [α1, β1]h(z) +Hp
q [α1, β1]g(z)

z

)
+(Hp

q [α1, β1]h(z))
′ + (Hp

q [α1, β1]g(z))
′ − α

 < β,

which is equivalent to

Re

{
∞∑

m=2

(α +m)Γm|am|zm−1 +
∞∑

m=1

(α +m)Γm|bm|zm−1 + 1

}
< β.

The above condition must hold for all values of z, |z| = r < 1. Upon

choosing the values of z to be real and let z → 1−, we obtain

∞∑
m=2

(α +m)Γm|am|+
∞∑

m=1

(α +m)Γm|bm| ≤ β − 1,

which gives the necessary part. This completes the proof of the theorem.

We now determine the extreme points of the closed convex hulls of

RH([α1, β1], α, β) denoted by clco RH([α1, β1], α, β).
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Theorem 2. A function f(z) ∈ clco RH([α1, β1], α, β) if and only if

(10) f(z) =
∞∑

m=1

(Xmhm(z) + Ymgm(z))

where h1(z) = z, hm(z) = z + β−1
(α+m)Γm

zm; (m ≥ 2), gm(z) = z +

β−1
(α+m)Γm

z−m; (m ≥ 1) and
∞∑

m=1

(Xm + Ym) = 1, Xm ≥ 0 and Ym ≥ 0. In

particular, the extreme points of RH([α1, β1], α, β) are {hm} and {gm}.

Proof. For functions f of the form (10) write

f(z) =
∞∑

m=1

(Xmhm(z) + Ymgm(z))

=
∞∑

m=1

(Xm + Ym)z +
∞∑

m=2

β − 1

(α +m)Γm

Xmz
m +

∞∑
m=1

β − 1

(α+m)Γm

Ymz
−m

= z +
∞∑

m=2

Amz
m +

∞∑
m=1

Bmz
−m,

where

Am =
β − 1

(α +m)Γm

Xm, and Bm =
β − 1

(α +m)Γm

Ym

Therefore,

∞∑
m=2

(α +m)Γm

β − 1
Am +

∞∑
m=1

(α +m)Γm

β − 1
Bm

=
∞∑

m=2

Xm +
∞∑

m=1

Ym

= 1−X1 ≤ 1,

and hence f(z) ∈ clco RH([α1, β1], α, β).
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Conversely, suppose that f(z) ∈ clco RH([α1, β1], α, β).

Setting

Xm =
(α +m)Γm

β − 1
Am; (m ≥ 2),

Ym =
(α +m)Γm

β − 1
Bm; m ≥ 1

where
∞∑

m=1

(Xm + Ym) = 1. We have

f(z) = z +
∞∑

m=2

Amz
m +

∞∑
m=1

Bmz
−m, Am, Bm ≥ 0

= z +
∞∑

m=2

β − 1

(α +m)Γm

Xmz
m +

∞∑
m=1

β − 1

(α+m)Γm

Ymz
−m

= z +
∞∑

m=2

(hm(z)− z)Xm +
∞∑

m=1

(gm(z)− z)Ym

=
∞∑

m=1

(Xmhm(z) + Ymgm(z))

as required.

Theorem 3. Each function in the class RH([α1, β1], α, β) maps a disk

Ur where r < inf
m

{
1

m(β−1−(α+1)|b1|

} 1
m−1

onto convex domains for

β > 1 + (α + 1)|b1|.

Proof. Let f ∈ RH([α1, β1], α, β) and let r be fixed, 0 < r < 1. Then
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r−1f(rz) ∈ RH([α1, β1], α, β) and we have

∞∑
m=2

m2(|am|+ |bm|)rm−1 =
∞∑

m=2

m(|am|+ |bm|)(mrm−1)

≤
∞∑

m=2

m(|am|+ |bm|)

≤
∞∑

m=2

(α +m)Γm

β − 1
(|am|+ |bm|)

≤ β − 1− (α + 1)|b1|
≤ 1

provided

mrm−1 ≤ 1

β − 1− (α + 1)|b1|
or

r < inf
m

{
1

m(β − 1− (α + 1)|b1|

} 1
m−1

.

This completes the proof of theorem 3.

For our next theorem, we need to define the convolution of two har-

monic functions.

For harmonic functions of the form

f(z) = z +
∞∑

m=2

|am|zm +
∞∑

m=1

|bm|z−m

and

F (z) = z +
∞∑

m=2

|Am|zm +
∞∑

m=1

|Bm|z−m,

we define their convolution

(11) (f ∗ F )(z) = f(z) ∗ F (z) = z +
∞∑

m=2

|amAm|zm +
∞∑

m=1

|bmBm|z−m

Using this definition, we show that the class RH([α1, β1], α, β) is closed

under convolution.
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Theorem 4. For 1 < β ≤ δ ≤ 2, let f ∈ RH([α1, β1], α, δ) and

F ∈ RH([α1, β1], α, β). Then f∗F ∈ RH([α1, β1], α, β) ⊆ RH([α1, β1], α, δ).

Proof. Let f(z) = z +
∞∑

m=2

|am|zm +
∞∑

m=1

|bm|z−m ∈ RH([α1, β1], α, δ) and

F (z) = z +
∞∑

m=2

|Am|zm +
∞∑

m=1

|Bm|z−m ∈ RH([α1, β1], α, β).

The convolution (f ∗ F ) is given by (11).

We note that, for F ∈ RH([α1, β1], α, δ), |Am| ≤ 1 and |Bm| ≤ 1. Now

we have

∞∑
m=2

(α +m)Γm

β − 1
|am||Am|+

∞∑
m=1

(α +m)Γm

β − 1
|bm||Bm|

≤
∞∑

m=2

(α +m)

β − 1
|am|+

∞∑
m=1

(α +m)

β − 1
|bm|

≤ 1, (f ∈ RH([α1, β1], α, β)

Therefore f ∗ F ∈ RH([α1, β1], α, β) ⊆ RH([α1, β1], α, δ).

Next, we show that RH([α1, β1], α, β) is closed under convex combi-

nations of its members.

Theorem 5. The class RH([α1, β1], α, β) is closed under convex combi-

nation.

Proof. For i = 1, 2, 3, . . . , let fi ∈ RH([α1, β1], α, β), where

fi(z) = z +
∞∑

m=2

|am,i|zm +
∞∑

m=1

|bm,i|z−m.

Then by theo 1, we have

∞∑
m=2

(α +m)Γm

β − 1
|am,i|+

∞∑
m=1

(α +m)Γm

β − 1
|bm,i| ≤ 1.
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For
∞∑
i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written

as

∞∑
i=1

tifi(z) = z +
∞∑

m=2

(
∞∑
i=1

ti|am,i|

)
zm +

∞∑
m=1

(
∞∑
i=1

ti|bm,i|

)
z−m

Then by theo 1, we have

∞∑
m=2

(α +m)Γm

β − 1

(
∞∑
i=1

ti|am,i|

)
+

∞∑
m=1

(α +m)Γm

β − 1

(
∞∑
i=1

ti|bm,i|

)

=
∞∑
i=1

ti

(
∞∑

m=2

(α +m)Γm

β − 1
|am,i|+

∞∑
m=1

(α +m)Γm

β − 1
|bm,i|

)

≤
∞∑
i=1

ti = 1.

Therefore,
∞∑
i=1

tifi(z) ∈ RH([α1, β1], α, β).

Following Ruscheweyh [9], the δ-neighborhood of f is the set

Nδ(f) =

{
F : F (z) = z +

∞∑
m=2

|Am|zm +
∞∑

m=1

|Bm|z̄m and

∞∑
m=2

m(|am − Am|+ |bm −Bm|+ |b1 −B1| ≤ δ

}

Theorem 6. Let f ∈ RH([α1, β1], α, β) and δ = β − 1 − α|b1|. Then

RH([α1, β1], α, β) ⊂ Nδ(I), where I is the identity function I(z) = z.

Proof. Let f ∈ RH([α1, β1], α, β).
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We have

|b1|+
∞∑

m=2

m(|am|+ |bm|)

≤ |b1|+
∞∑

m=2

(α +m)Γm(|am|+ |bm|)

≤ |b1|+ β + α− (1 + α)(1 + |b1|)
= β − 1− α|b1|.

Hence f(z) ∈ Nδ(I).

3 Integral Operator

Now, we examine a closure property of the class RH([α1, β1], α, β) under

the generalized Bernardi-Libera-Livingston integral operator Lc(f) which

is defined by

Lc(f) =
c+ 1

Zc

∫ z

0

tc−1f(t)dt, c > −1.

Theorem 7. Let f(z) ∈ RH([α1, β1], α, β). Then Lc(f(z)) ∈ RH([α1, β1], α, β).

Proof. From the representation of Lc(f(z)), it follows that

Lc(f) =
c+ 1

Zc

∫ z

0

tc−1(h(t) + g(t))dt

=
c+ 1

Zc

∫ z

0

tc−1

(
t+

∞∑
m=2

amt
m

)
dt+

∫ z

0

tc−1

(
∞∑

m=1

bmtm

)
dt


= z +

∞∑
m=2

Amz
m +

∞∑
m=1

Bmz
m,

where, Am =
c+ 1

c+ n
am, Bm =

c+ 1

c+ n
bm.
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Therefore,

∞∑
m=1

(
(α +m)

β − 1

(
c+ 1

c+ n

)
|am|+

(α +m)

β − 1

(
c+ 1

c+ n

)
|bm|

)
Γm

≤
∞∑

m=1

(
(α +m)

β − 1
|am|+

(α +m)

β − 1
|bm|

)
Γm

≤ 1,

since f(z) ∈ RH([α1, β1], α, β), therefore by theo 1,

Lc(f(z)) ∈ RH([α1, β1], α, β).
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Stability of a common fixed point iterative
procedure involving four selfmaps of a

metric space 1

G. Akinbo, O.O. Owojori, A.O. Bosede

Abstract

The purpose of this paper is to establish stability results for

(S, T )-iterative procedure involving two pairs of weakly compatible

selfmaps of a metric space. Our results generalize those of Singh et

al[18] and others.

2000 Mathematics Subject Classifications: 47H10, 54H25.

Key words and Phrases: Stability, (S, T )-iteration, common fixed

point.

1 Introduction and Preliminaries

Let T be a selfmap of a metric space X with the set {x ∈ X : Tx = x} of

fixed points of T containing at least one member. Let the sequence {xn}
1Received 5 February, 2009

Accepted for publication (in revised form) 28 May, 2011
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converging to the fixed point of T in X be generated by the iterative process

f(T, xn). Then the iterative process f(T, xn) is said to be T -stable if and

only if a sequence {yn} in X, approximately close to {xn}, converges to the

same fixed point of X. After Harder and Hicks[2,3] first gave the formal

definition of the stability of general iterative procedures, various authors

have studied several special cases of the general iterative procedure over

many years. Among such authors are Berinde[1], Imoru and Olatinwo[5],

Jachymski[6,7], Matkowski and Singh[10], Osilike[12] and Rhoades[17]. In

2005, Singh et al [18] introduced the stability of Jungck and Jungck-Mann

iterative procedures for a pair of Jungck-Osilike-type maps on an arbitrary

set with values in a metric space.

Let Y be an arbitrary nonempty set and (X, d) a metric space. Let S, T :

Y −→ X and TY ⊆ SY. For any x0 ∈ Y, consider

(1) Sxn+1 = f(T, xn), n = 0, 1, ...

The stability of this general procedure was developed by Singh in [18]. He

observed that putting Y = X and f(T, xn) = Txn, yields the Jungck itera-

tive procedure (or, J-iteration), namely, Sxn+1 = Txn, n = 0, 1, .... Jungck

iterative procedure was much earlier introduced in 1976, and it gives the

Picard iterative procedure when S is taken as the identity map on X.

Definition 1.1. [Singh et al.(2005)] Let S, T : Y −→ X, TY ⊆ SY, and z

a coincidence point of T and S, that is, Sz = Tz = p(say). For any x0 ∈ Y,

let the sequence {Sxn}, generated by the iterative procedure (1), converges

to p. Let {Syn} in X be an arbitrary sequence, and set

ϵn = d(Syn+1, f(T, yn)), n = 0, 1, ....

Then the iterative procedure f(T, xn) will be called (S, T )-stable if and only

if limn ϵn = 0 implies limn Syn = p.
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This basic result for the stability of J-iterations given below is proved in

Singh et al[18].

Theorem 1.2. Let S and T be maps on an arbitrary set Y with values in a

metric space X such that TY ⊆ SY, and SY or TY is a complete subspace

of X. Let z be a coincidence point of T and S, that is, Sz=Tz=p(say). Let

x0 ∈ Y and let the sequence {Sxn}, generated by Sxn+1 = Txn, n = 0, 1, ....

If the pair (S,T) is a J-contraction, then

d(p, Syn+1) ≤ d(p, Sxn+1) + kn+1d(Sx0, Sy0) +
∑n

i=0 k
n+1ϵn; further,

limn Syn = p if and only if limn ϵn = 0.

Let A,B, S and T be mappings of a metric space (X, d) into itself such

that AX ⊆ TX and BX ⊆ SX. Then for an arbitrary x0 ∈ X, there exists

a point x1 ∈ X such that Ax0 = Tx1. For this point x1 we can choose

a point x2 such that Bx1 = Sx2 and so on. Inductively, we can define a

sequence {yn} in X such that

(2) y2n = Ax2n = Tx2n+1 and y2n+1 = Sx2n+2 = Bx2n+1,

for all n = 0, 1, 2, ....

This iterative sequence has been used by many authors (see [4], [13], [14])

to establish existence of unique common fixed points for some classes of

contractions in both metric and Banach spaces. For example, Pathak et

al.[14,15] proved that, the sequence converges to the unique fixed point of

the four maps given that some contractive conditions are satisfied and that

the pairs (A, S) and (B, T ) are weakly compatible. Two maps are weakly

compatible if they commute at their coincidence points. For more on com-

patibility and its weaker forms, the reader may see [4], [8], [9], [13], [14] and
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[15].

The iterative procedure (2) is considered numerically stable if and only if

a sequence {zn} inX, approximately close to {yn}, converges to the common

fixed point p ∈ X of A,B, S and T.

In this scheme we define

(3) ϵ2k = d(Bz2k+1, Sz2k) and ϵ2k+1 = d(Az2k, T z2k+1)

for k = 1, 2, ....

Motivated by Definition 1.1 above, we shall say that the iterative pro-

cedure (2) is stable with respect to the mappings A,B, S and T if and only

if

lim
k→∞

ϵk = 0 ⇔ lim
n→∞

Sz2n = lim
n→∞

Tz2n+1 = p.

Beginning with the contractive definition

(4) d(Ax,By) ≤ kd(Sx, Ty), k ∈ [0, 1),

we shall investigate stability of the (S, T )-iterations for some classes of con-

tractive mappings.

2 Main results

Theorem 2.1. Let A,B,S and T be mappings of a metric space (X,d) into

itself such that AX ⊆ TX and BX ⊆ SX, and SY or TY a complete

subspace of X. Let p be a common fixed point of A,B,S,T, and the sequence

{yn} in X generated by (2), for x0 ∈ X and n = 0, 1, 2, ..., converge to p.
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Let {zn} be in X, and define

ϵ2n = d(Bz2n+1, Sz2n) and ϵ2n+1 = d(Az2n, T z2n+1), n = 0, 1, ....

If A,B,S,T satisfy (4) for all x, y ∈ X, then

lim
n→∞

ϵn = 0 ⇔ lim
n→∞

Sz2n = lim
n→∞

Tz2n+1 = p.

Proof. Suppose limn→∞ ϵn = 0, n = 0, 1, 2.... Using (2), (4) and the

triangle inequality,

d(p, Tz2n+1) ≤ d(Tz2n+1, Az2n) + d(Az2n, Bx2n+1) + d(Bx2n+1, p)

≤ ϵ2n+1 + kd(Sz2n, Tx2n+1) + d(Bx2n+1, p)

≤ ϵ2n+1 + k[d(Sz2n, Bz2n+1) + d(Bz2n+1, Tx2n+1)] + d(Bx2n+1, p)

= ϵ2n+1 + kϵ2n + kd(Bz2n+1, Ax2n) + d(Bx2n+1, p)

≤ ϵ2n+1 + kϵ2n + k2d(Sx2n, T z2n+1) + d(Bx2n+1, p)

Letting n → ∞, we have ϵn = 0, Sx2n = 0 and Bx2n+1 = 0 so that

(1− k2)d(p, Tz2n+1) ≤ 0.

But 1− k2 > 0. Therefore, Tz2n+1 = p as n→ ∞.

Since {Az2n} ⊆ {Tz2n+1}, we also have Az2n = p as n→ ∞.

Further,

d(p, Sz2n) ≤ d(Sz2n, Bz2n+1) + d(Bz2n+1, Az2n) + d(p,Az2n)

≤ ϵ2n + kd(Sz2n, T z2n+1) + d(p,Az2n)

As n→ ∞,

d(p, Sz2n) ≤ kd(Sz2n, p)
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so that, since 1− k > 0, Sz2n = p as n→ ∞.

Therefore,

lim
k→∞

ϵk = 0 ⇒ lim
n→∞

Sz2n = lim
n→∞

Tz2n+1 = p.

Conversely, suppose

lim
n→∞

Szn = lim
n→∞

Tzn = p.

Then, by {Az2n} ⊆ {Tz2n+1} and {Bz2n+1} ⊆ {Sz2n}, we also have

lim
n→∞

Az2n = lim
n→∞

Bz2n+1 = p.

Therefore, limn→∞ ϵn = 0, n = 0, 1, 2.... This completes the proof.

Corollary 2.2. Let A,B,S be mappings of a metric space (X,d) into it-

self such that AX ∪BX ⊆ SX, and SX a complete subspace of X. Let p be

a common fixed point of A,B,S, and the sequence {yn} in X generated by

x0 ∈ X and

(5) y2n = Ax2n = Sx2n+1 and y2n+1 = Sx2n+2 = Bx2n+1, n = 0, 1, 2, ...

converge to p.

Let {zn} be in X, and define

ϵ2n = d(Bz2n+1, Sz2n) and ϵ2n+1 = d(Az2n, Sz2n+1), n = 0, 1, ....

If A,B,S satisfy

d(Ax,By) ≤ kd(Sx, Sy), k ∈ [0, 1),

for all x, y ∈ X, then

lim
n→∞

ϵn = 0 ⇔ lim
n→∞

Szn = p.
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Proof. Let S = T in Theorem 2.1.

Remark 2.3. If we put A = B into Theorem 2.1., the iterative scheme (5)

becomes the Picard iteration and A becomes an S-contraction.

It is important to note that if we put a = 1 and φ(u) = ku for all u ∈ ℜ in

the definition of parametrically φ(ϵ, δ; a)-contraction introduced by Pathak

et al in [15], we obtain (4). Hence, our assumption on the existence of com-

mon fixed point for A,B, S, T is in order, especially when the pairs (A, S)

and (B, T ) are weakly compatible.

In what follows, we obtain similar results for the classes of contractive

mappings given below.

Let A,B, S, T be selfmaps of a metric space X. For all x, y ∈ X, there

exist constants γ, β ∈ [0, 1
2
) such that

(6) d(Ax,By) ≤ β[d(Sx,Ax) + d(Ty,By)]

and

(7) d(Ax,By) ≤ γ[d(Sx,By) + d(Ty,Ax)].

Theorem 2.4. Let A,B,S and T be mappings of a metric space (X,d) into

itself such that AX ⊆ TX and BX ⊆ SX, and SY or TY a complete sub-

space of X. Suppose p is a common fixed point of A,B,S,T, and the sequence

{yn} in X generated by (2), for x0 ∈ X and n = 0, 1, 2, ..., converges to p.

Let {zn} be in X, and define

ϵ2n = d(Bz2n+1, Sz2n) and ϵ2n+1 = d(Az2n, T z2n+1), n = 0, 1, ....
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If A,B,S,T satisfy at least one of (6) and (7) for all x, y ∈ X and γ, β ∈
[0, 1

2
), then

lim
n→∞

ϵn = 0 ⇔ lim
n→∞

Sz2n = lim
n→∞

Tz2n+1 = p.

Proof. Firstly, assuming (6) holds. Suppose ϵn = 0 as n→ ∞.

With the triangle inequality and the iterative scheme (2), we obtain

d(Az2n, Sz2n) ≤ d(Az2n, Bz2n+1) + d(Bz2n+1, Sz2n)

≤ β[d(Sz2n, Az2n) + d(Tz2n+1, Bz2n+1)] + ϵ2n

= ϵ2n + βd(Az2n, Sz2n) + βd(Tz2n+1, Bz2n+1)

(1− β)d(Az2n, Sz2n) ≤ ϵ2n + β[d(Tz2n+1, Az2n) + d(Az2n, Bz2n+1)]

= ϵ2n + βϵ2n+1 + βd(Az2n, Bz2n+1)

≤ ϵ2n + βϵ2n+1 + β[d(Az2n, Sz2n) + d(Sz2n, Bz2n+1)]

Therefore,

(1− 2β)d(Az2n, Sz2n) ≤ (1 + β)ϵ2n + βϵ2n+1.

Since 1− 2β > 0, we have Az2n = Sz2n as n→ ∞.

Putting x = z2n, y = x2n+1 into (6), as n→ ∞, Az2n = p.

By the inclusions AX ⊆ TX and BX ⊆ SX, we have

lim
n→∞

Sz2n = lim
n→∞

Az2n = lim
n→∞

Tz2n+1 = p.

Conversely, let limn→∞ Sz2n = limn→∞ Tz2n+1 = p. Then limn→∞Az2n =

limn→∞Bz2n+1 as well.

Consequently,

lim
n→∞

ϵ2n = lim
n→∞

ϵ2n+1 = 0.

In a similar manner, when (7) holds we obtain

d(Az2n, Sz2n) ≤ (1 + γ)ϵ2n + γϵ2n+1
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and the rest of the proof is easy.

The summary of Theorems 2.1 and 2.4 is stated below.

Corollary 2.5. Let A,B,S and T be mappings of a metric space (X,d) into

itself such that AX ⊆ TX and BX ⊆ SX, and SY or TY a complete sub-

space of X. Suppose p is a common fixed point of A,B,S,T, and the sequence

{yn} in X generated by (2), for x0 ∈ X and n = 0, 1, 2, ..., converges to p.

Let {zn} be in X, and define

ϵ2n = d(Bz2n+1, Sz2n) and ϵ2n+1 = d(Az2n, T z2n+1), n = 0, 1, ....

If A,B,S,T satisfy

(8) d(Ax,By) ≤

max{αd(Sx, Ty), β[d(Sx,Ax) + d(Ty,By)], γ[d(Sx,By) + d(Ty,Ax)]}

for all x, y ∈ X, 0 ≤ α < 1, 0 ≤ γ, β < 1
2
, then

lim
n→∞

ϵn = 0 ⇔ lim
n→∞

Sz2n = lim
n→∞

Tz2n+1 = p.

Remark 2.6. Putting A = B and S = T = Id, where Id is the identity

mapping ofX, in (8) yields the Zamfirescu mapping. It is worth emphasizing

that the Zamfirescu mapping is a nice generalization of several contractrac-

tive definitions in the literature. Interested reader may see [1], [16] and

[19].
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G-Loewner chains and parabolic starlike
mappings in several complex variables 1

S. Rahrovi, A. Ebadian and S. Shams

Abstract

Let f be a locally univalent function on the unit disc and

Q : Cn → C be a homogenous polynomial of degree 2. We consider

the normalized extension of f to the Euclidean unit ball Bn ⊆ C
given by

[Φn,Q(f)](z) = (f(z1) + f ′(z1)Q(ẑ),
√
f ′(z1)ẑ)

where z = (z1, ẑ) ∈ Bn. This operator was recently introduced

by Muir. In the case Q ≡ 0 this operator reduces to the well

known Roper-Suffridge extension operator. By using the method

of Loewner chain, we prove that if f can be embedded as the first

element of g-Loewner chain on the unit disc, where g = 1
q , then

F = Φn,Q(f) can be embedded as the first element of g-Loewner

chain on Bn. Moreover, let f be a parabolic starlike mapping on

U , then F = Φn,Q(f) is parabolic starlike mapping on Bn if and

only if ∥Q∥ ≤ 1
4 .
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1 Introduction

Let Cn be the vector space of n-complex variables z = (z1, . . . , zn) with

the Euclidean inner product < z,w >=
∑∞

k=1 zkw̄k and Euclidean norm

∥z∥ = < z, z >1/2. The open ball {z ∈ Cn : ∥z∥ < r} is denoted by Bn
r

and the unit ball Bn
1 by Bn. In the case of one complex variable, B1 is

denoted by U . It is convenient, if n ≥ 2, to write a vector z ∈ Cn as

z = (z1, ẑ), where z1 ∈ C and ẑ ∈ Cn−1.

Let Qn denote the set of all homogenous polynomials Q : Cn → C of

degree 2. That is, Q(λz) = λ2Q(z) for all z ∈ Cn and λ ∈ C. We know

that Qn is a Banach space with the norm

∥Q∥ = sup
z∈Cn\{0}

|Q(z)|
∥z∥2

, Q ∈ Qn.

Let H(Bn,Cn) denote the topological vector space of all holomorphic

mappings F : Bn → Cn. If F ∈ H(Bn), we say that F is normalized

if F (0) = 0 and DF (0) = I, where DF is the Fréchet differential of F

and I is the identity operator on Cn. Let S(Bn) be the set of normalized

biholomorphic mappings on Bn, and S1 = S is the classical family of

univalent mappings of U .

A map f ∈ S(Bn) is said to be convex if its image is convex domain

in Cn, and starlike if the image is a starlike domain with respect to 0.

We denote the classes of normalized convex and starlike mappings on Bn

respectively by K(Bn) and S∗(Bn).

In 1995, Roper and Suffridge [17] introduced an extension operator

which gives a way of extending a(locally) univalent function on the unit

disc to a(locally) univalent mapping of Bn into Cn.

For fixed n ≥ 2, the Roper-Suffridge extension operator (see [5] and [17])

in the function

[Φn(f)](z) = (f(z1),
√
f ′(z1)ẑ), f ∈ S1, z ∈ Bn

The branch of the power function is chosen so that
√
f ′(z1)|z1=0 = 1.
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The following results illustrate the important and usefulness of the

Roper-Suffridge extension operator

Φn(K1) ⊆ Kn, Φ0(S
∗
1) ⊆ S∗

n,

The first was proved by K. A. Roper and T. J. Suffridge when they

introduced their operator [17], while the second result was given by I.

Graham and G. Kohr [6]. Until now, it is difficult to constant the con-

crete convex mappings, starlike mappings on Bn. By making use of the

Roper-Suffridge extension operator, we may easily give many concrete

examples about these mappings. This is one important reason why peo-

ple are interested in this extension operator. A good treatment of further

applications of the Roper-Suffridge extension operator can be found in

the recent book by Graham and Kohr [5].

For a function f ∈ S, we introduce the quantity

Λf (z) =
1− |z|2

2

f ′′(z)

f ′(z)
− z̄,(1.1)

for z ∈ U . Now, fix z ∈ U . The disk automorphism transform is denoted

by ψ. In other words,

ψ(w) =
z − w

1− z̄w
.

Consider the Koebe transform of f with respect to disk automorphism

ψ by the form

g(w) =
f(ψ(w))− f(ψ(0))

f ′(ψ(0))ψ′(0)

for w ∈ U . Clearly, g ∈ U , and a simple calculation shows that g′′(0) =

−2Λf (z). It then follows that g has a power series expansion of the form

g(w) = w − Λf (z)w
2 +O(∥w∥3),

for w ∈ U . The well-known coefficient bound for the second coefficient

of a function in S gives

|Λf (z)| ≤ 2,

for f ∈ S and z ∈ U .
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Definition 1.1 Let Q ∈ Qn−1. For any f ∈ S, define the operator

ΦQ(f) : B
n → Cn by

[ΦQ(f)](z) = (f(z1) + f ′(z1)Q(ẑ),
√
f ′(z1)ẑ), z = (z1, ẑ) ∈ Bn,

we choose the branch of the power function such that
√
f ′(z1)|z1=0 = 1.

Recently Muir [13] proved the following results:

Theorem 1.2 If Q ∈ Qn−1, then Φn,Q(K) ⊆ K(Bn) if and only if

∥Q∥ ≤ 1
2
.

Theorem 1.3 If Q ∈ Qn−1, then Φn,Q(S
∗) ⊆ S∗(Bn) if and only if

∥Q∥ ≤ 1
4
.

Let

Mg = {h ∈H(Bn) : h(0) = 0, Dh(0) = In,

< h(z),
z

∥z∥2
>∈ g(U), z ∈ Bn\{0}}

For g(ξ) = 1+ξ
1−ξ

, ξ ∈ U , we obtain the well known set Mg = M of

mapping with ”positive real part on Bn”, i.e.

M = {h ∈H(Bn) : h(0) = 0, Dh(0) = In,

Re < h(z),
z

∥z∥2
>> 0, z ∈ Bn\{0}}

Now, we give the definition of parabolic starlike mappings on Bn (see

[9]). Let

q(η) = 1 +
4

π2
(log

1 +
√
η

1−√
η
)2.(1.2)

Then q is a biholomorphic mapping from U onto domain Ω, where

Ω = {w = u+ iv : v2 < 4u} = {w : |w − 1| < 1 +Rew}.

we not that Ω is a parabolic region in the right half- plane.
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Definition 1.4 Let f be a normalized locally biholomorphic mapping on

Bn, we say that f is a parabolic starlike mapping if

< [Df(z)]−1f(z),
z

∥z∥
>∈ g(U), z ∈ Bn\{0}

where g = 1
q
.

Next, we recall the definition of subordination and Loewner chain.

For various results related to the Loewner chain in Cn, the reader may

consult [1− 5, 8, 10, 14, 20].

Let f, g ∈ H(Bn), we say that f is subordinate to g ( and write f ≺ g)

if there exists a Schwarz mapping v (i.e. v ∈ H(Bn) and ∥v(z)∥ ≤ ∥z∥,
z ∈ Bn) such that f(z) = g(v(z)), z ∈ Bn. If g is biholomorphic on Bn,

this is equvalent to requiring that f(0) = g(0) and f(Bn) ⊆ g(Bn).

Definition 1.5 A mapping f : Bn × [0,+∞) → Cn is called Loewner

chain if f(., t) is biholomorphic on Bn, f(0, t) = 0, Df(0, t) = etIn for

t ≥ 0, and f(., s) ≺ f(., t) wherever 0 ≤ s ≤ t <∞ and z ∈ Bn.

The above subordination condition is equivalent to the fact that there

exists a unique biholomorphic Schwarz mapping v = v(z, s, t), called the

transition mapping associated to f(z, t), such that

f(z, s) = f(v(z, s, t), t), z ∈ Bn, t ≥ s ≥ 0.

The authors [4], [8] (see also [5, Theorem 8.1.6]; cf. [14] and [16])

obtained the following sufficient condition for a mapping to be a Loewner

chain.

Lemma 1.6 Let h = h(z, t) : Bn × [0,+∞) → Cn satisfy the following

conditions:

(i) h(., t) ∈ M for t ≥ 0;

(ii) h(z, .) is measurable on [0,+∞) for z ∈ Bn.
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Let f = f(z, t) : Bn × [0,+∞) → Cn be a mapping such that f(., t) ∈
H(Bn), f(0, t) = 0, Df(0, t) = etIn for t ≥ 0, and f(z, .) is locally

absolutely continuous on [0,+∞) locally uniformly with respect to z ∈ Bn.

Assume that

∂f

∂t
(z, t) = Df(z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ Bn.

Further, assume that exists an increasing sequence {tm}m∈N such that

tm > 0, tm → ∞ and

lim
m→∞

etmf(z, tm) = F (z),

locally uniformly on Bn. Then f(z, t) is a Loewner chain.

Remark 1.7 In the case of one complex variable if f(ξ, t) is a Loewner

chain, then it is well known that {e−tf(., t)}t≥0 is a normal family on

U , and there exists function p = p(ξ, t) such that (see [15/85]) p(0) = 0,

Rep(ξ) > 0 for t ≥ 0, and p(ξ, .) is a measurable on [0,+∞) for ξ ∈ U

and (see [35/85])

∂f

∂t
(ξ, t) = ξf ′(ξ, t)p(ξ, t), a.e. t ≥ 0,∀ξ ∈ U.

Remark 1.8 In higher dimensions, Graham, Kohr and Kohr [8] (see

also [5]), proved that if f(z, t) is a Loewner chain on Bn, then f(z, .)

is locally Lipschitz on [0,+∞) locally uniformly with respect to z ∈ Bn.

Also, then exists a mapping h = h(z, t), which satisfies the conditions (i)

and (ii) Lemma 1.6 such that (see [4])

∂f

∂t
(z, t) = Df(z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ Bn.(1.3)

Now, we are able to recall the notions of g-Loewner chain and g-

parametric representation (cf. [4]). For our purpose, we consider these

notion only for g = 1
q
.
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Definition 1.9 A Loewner chain f(z, t) is called g-Loewner chain (cf.

[4, 10/44]) if {e−tf(., t)}t≥0 is a normal family on Bn and the mapping

h = h(z, t) which occurs in the Loewner differential equation (1.3) satis-

fies the condition h(., t) ∈ Mg for a.e. t ≥ 0.

Definition 1.10 Let f : Bn → Cn be a normalized holomorphic map-

ping. we say that f has g-parametric representation if there exists a

g-Loewner chain f(z, t) such that f = f(, .0).

Let S0
g (B

n) be the set of all mapping f such that there exists a g-

Loewner chain f(z, t) such that f = f(, .0). When f ∈ S0
g (B

n), we also

say that f has g-parametric representation on Bn [4]. If g(ξ) = 1+ξ
1−ξ

,

then S0
g (B

n) reduce to the set S0(Bn) of mapping which have parametric

representation on Bn. Clearly S0
g (B

n) ⊂ S0(Bn) ⊂ S(Bn). On the other

hand, we remark that, in several complex variables, there exist mappings

which can be imbedded in Loewner chain without having parametric

representation ([4, Example 2.12]).

2 Some Lemmas

In order to prove the main results, we need the following lemmas.

Lemma 2.1 [9]. Let g = 1
q
. Then g(U) is starlike with respect to 1.

Lemma 2.2 [21]. Let p be a holomorphic function on U . If Re p(z) > 0

and p(0) > 0, then

|p′(z)| ≤ 2Re p(z)

1− |z|2
.(2.1)

Lemma 2.3 [21]. Let p be a normalized biholomorphic function on

U .Then

|(1− |z|2)f
′′(z)

f ′(z)
− 2z̄| ≤ 4.(2.2)
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3 Main Results

Theorem 3.1 Let Q : Cn−1 → Cn be a homogeneous polynomial of

degree 2 such that ∥Q∥ ≤ 1
4
. Also, assume f ∈ S can be embedded as the

first element of a g-Loewner chain on U , where g = 1
q
. Then F = Φn,Q(f)

can be embedded as the first element of a g-Loewner chain on Bn.

Proof: Let f(z1, t) be a g-Loewner chain such that f(z1) = f(z1, 0)

for z1 ∈ U . Let F (z, t) be the map defined by

F (z, t) =
(
f(z1, t) +Q(ẑ)f ′(z1, t), ẑe

t
2 (f ′(z1, t))

1
2

)
,(3.1)

for z = (z1, ẑ) ∈ Bn and we choose the branch of the power function such

that (f ′(z1, t))
1
2 |z1=0= e

t
2 for t ≥ 0. For ∥Q∥ ≤ 1

4
, we know that F (z, t)

a Loewner chain (see [12]).

Since f(z1, t) is a Loewner chain, f(z1, t) is locally absolutely con-

tinuous on [0,+∞), locally uniformly with respect to z1 ∈ U , and there

exists the function p(z1, t) that is holomorphic on U and measurable in

t ≥ 0, with p(0, t) = 1, Rep(z1, t) > 0 for z1 ∈ U , and such that (see [15])

∂f

∂t
(z1, t) = z1f

′(z1, t)p(z1, t), a.e. t ≥ 0,∀z1 ∈ U.

The fact that f(z1, t) is a g-Loewner chain is equivalent to the condition

|p(z1, t)− 1| < 1, a.e. t ≥ 0, ∀z1 ∈ U.

The mapping h = h(z, t) which occurs in the Loewner differential equa-

tion
∂f

∂t
(z, t) = Df(z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ Bn.

is given by

h(z, t) =

(
z1p(z1, t)−Q(ẑ),

ẑ

2

(
1 + p(z1, t) + z1p

′(z1, t) +Q(ẑ)
f ′′(z1, t)

f ′(z1, t)

))
for all z ∈ Bn and t ≥ 0.
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We will show that h(., t) ∈ Mg for a.e. t ≥ 0, which is equivalent to∣∣∣∣ 1

∥z∥2
< h(z, t), z > −1

∣∣∣∣ < 1, a.e. t ≥ 0,∀z ∈ Bn\{0}.

If z = (z1, 0) then∣∣∣∣ 1

∥z∥2
< h(z, t), z > −1

∣∣∣∣ = |p(z1, t)− 1| < 1, a.e. t ≥ 0,

in view of the fact that f(z1, t) is a g-Loewner chain. Hence, it suffices to

assume that z = (z1, ẑ) ∈ Bn\{0} with ẑ ̸= 0. Then it is easy to see that

h(., t) is a holomorphic in a neighborhood of each point z = (z1, ẑ) ∈ B̄n

with ẑ ̸= 0, and in view of the minimum principal for harmonic functions,

it enough to prove that

| < h(z, t), z > −1| ≤ 1, a.e. t ≥ 0,∀z = (z1, ẑ) ∈ Cn, |z1|2+∥ẑ∥2 = 1, ẑ ̸= 0.

By elementary computation, we obtain that

< h(z, t), z > =
1 + |z1|2

2
p(z1, t) +

1− |z1|2

2
[z1p

′(z1, t)] +
1− |z1|2

2

+Q(ẑ){1− |z1|2

2

f ′′(z1, t)

f ′(z1, t)
− z̄1}.

Therefor, using the fact that ∥Q∥ ≤ 1
4
,we need to prove that

| < h(z, t), z > −1| ≤ 1, a.e. t ≥ 0,∀z = (z1, ẑ) ∈ ∂Bn , ẑ ̸= 0,

or, equivalently

Re < h(z, t), z >≥ 1

2
, a.e. t ≥ 0, ∀z = (z1, ẑ) ∈ ∂Bn , ẑ ̸= 0.

On the other hand, since e−tf(., t) ∈ S (see [12]), t ≥ 0, it is well known

that ( by using of Lemma 2.3)∣∣∣∣1− |z1|2

2

f ′′(z1, t)

f ′(z1, t)
− z̄1

∣∣∣∣ ≤ 2 z1 ∈ U, t ≥ 0.(3.2)
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Since p(0, t) = 1, Rep(z1, t) > 0 for z1 ∈ U , it follows that (see e.g. [5])

|p′(z1, t)| ≤
2

1− |z1|2
Rep(z1, t) z1 ∈ U, t ≥ 0.(3.3)

(see e.g. [15]); from this we obtain

Re (z1p
′(z1, t)) ≥ − 2|z1|

1− |z1|2
Rep(z1, t) z1 ∈ U, t ≥ 0.(3.4)

Fix t ≥ 0 and let z = (z1, ẑ) ∈ ∂Bn with ẑ ̸= 0. Using this inequality

together with (3.2), we obtain

Re < h(z, t), z >=
1 + |z1|2

2
Rep(z1, t) +

1− |z1|2

2
Re[z1p

′(z1, t)] +
1− |z1|2

2

+Re

[
Q(ẑ){1− |z1|2

2

f ′′(z1, t)

f ′(z1, t)
− z̄1}

]
≥ (1− |z1|)2

2
Rep(z1, t) +

1− |z1|2

2
− 2(1− |z1|2)∥Q∥ ≥ 1

2
,

whenever ∥Q∥ ≤ 1
4
.

Finally, it remains to prove that {e−tF (., t)}t≥0 is a normal family on

Bn. Indeed, since {e−tf(., t)}t≥0 is a normal family on U , there exists

a sequence (tm) such that tm → ∞, tm > 0 and e−tmf(z1, tm) → w(z1)

locally uniformly on U as m → ∞. It is clear that w ∈ S, in view of

Hurwitz′s theorem. Then it is easy to see that limm→∞ e−tmF (z, tm) =

W (z) locally uniformly on Bn as m → ∞, where W (z) = Φn,Q(w), thus

{e−tF (., t)}t≥0 is also normal family on Bn.

Combining the above argument and taking into account Lemma 1.6,

we deduce that F (z, t) is a g-Loewner chain as desired. This completes

the proof.

In view of Theorem 3.1, we obtain the following particular cases. This

result was obtained in [12], in the case g(ξ) = 1−ξ
1+ξ

.

Corollary 3.2 Let Q : Cn−1 → Cn be a homogeneous polynomial of de-

gree 2 such that ∥Q∥ ≤ 1
4
and f : U → C has g-parametric representation,

then F = Φn,Q(f) ∈ S0
g (B

n) where g = 1
q
.
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Proof: Since f has g-parametric representation, there exists g-

Loewner chain f(ξ, t) such that f = f(., 0). In view of Theorem 3.1,

F (z, t) given by (3.1) is a g-Loewner chain. Since {e−tF (., t)}t≥0 is also

normal family on Bn by the proof of Theorem 3.1 and F = F (., 0) we

deduce that F = Φn,Q(f) ∈ S0
g (B

n), as desired. This completes the

proof.

In the next Theorem, we show that if Q ∈ Qn−1 and f ∈ S is a

parabolic starlike mapping on U , then F = Φn,Q(f) is a parabolic starlike

mapping on Bn if and only if ∥Q∥ ≤ 1
4
.

Theorem 3.3 Let Q : Cn−1 → Cn be a homogeneous polynomial of

degree 2 and let f : U → C be a normalized locally univalent function,

which satisfies the condition∣∣∣∣z1f ′(z1)

f(z1)
− 1

∣∣∣∣ < 1, z1 ∈ U.(3.5)

Also let F = Φn,Q(f), then∣∣∣∣ ∥z∥2

< DF−1(z)F (z), z >
− 1

∣∣∣∣ < 1 z ∈ Bn\{0},

and hence F is parabolic starlike mapping on Bn if and only if ∥Q∥ ≤ 1
4
.

Proof: Let f ∈ S is a parabolic starlike mapping on U and ∥Q∥ ≤
1
4
. Since Re < DF−1(z)F (z), z >> 0 parabolic starlike mappings are

starlike mappings by Suffridge [18]. Therefor f(ξ, t) = etf(ξ) is a g-

Loewner chain where g = 1
q
, |ξ| < 1. In view of Theorem 3.1, we deduce

that F (z, t) given by (3.1) is a g-Loewner chain and the fact that ∥Q∥ ≤
1
4
. On the other hand, since

F (z, t) =
(
etf(z1) +Q(ẑ)etf ′(z1), ẑe

t
√
f ′(z1)

)
= etΦn,Q(f)(z),

for z1 ∈ Bn, t ≥ 0. We deduce that Φn,Q(f) is a parabolic starlike

mapping on Bn.
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For the converse, suppose that ∥Q∥ ≥ 1
4
, let f(ξ) = ξ

1−ξ
, ξ ∈ U .

Obviously f is a parabolic starlike mapping on U . Let F = Φn,Q(f). For

z = (z1, ẑ) ∈ Bn, by simple calculations we have ( see [?] Theorem 4.1)

DF−1(z)F (z) =


f(z1)
f ′(z1)

−Q(ẑ)

−1
2
f ′′(z1)f(z1)
(f ′(z1))2

ẑ + 1
2
f ′′(z1)
f ′(z1)

Q(ẑ)ẑ + ẑ


therefor

< DF (z)−1F (z), z >=
f(z1)

f ′(z1)
z̄1 − z̄1Q(ẑ)

+ ∥ẑ∥2
(
1− 1

2

f(z1)f
′′(z1)

[f ′(z1)]2
) +

1

2

f ′′(z1)

f ′(z1)
Q(ẑ)

)
.(3.6)

Now, let u ∈ ∂Bn−1 be such that Q(u) = −∥Q∥, and z = (r,
√
1− r2u) ∈

∂B for r ∈ (0, 1). A simple calculation reveals that Λf (z1) = 1, and

Q(ẑ) = −(1− r2)∥Q∥. Therefore, by using (3.6), we have

Re < DF (z)−1F (z), z > = r2(1− r)− (1− r2)∥Q∥+ (1− r2)(1− r)

=
r2

1 + r
(1− r2)− (1− r2)∥Q∥+ (1− r2)2

1 + r

= (
1

1 + r
− ∥Q∥)(1− r2)(3.7)

For r sufficiently close to 1 and ∥Q∥ ≥ 1/4, the above relation will be

negative (therefor less than 1
2
) , proving that F is not a parabolic starlike

mapping on Bn. This complete the proof. The following corollary was

obtained by Muir [13] in the case of g(ξ) = 1−ξ
1+ξ

(in the case of Q ≡ 0 see

[7]).

Corollary 3.4 Let n ≥ 2 and Q ∈ Qn−1. Then Φn,Q(S
∗
1) ⊆ S∗

n if and

only if ∥Q∥ ≤ 1
4
.
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A class of univalent functions obtained by
a general multiplier transformation 1

Georgia Irina Oros

Abstract

In this paper we introduce a multiplier transformation denoted

by Ip(β,m, n;λ, l). Using this transformation, the class of univa-

lent functions denoted by Sα
p (β,m, n;λ, l) is introduced. An in-

tegral operator denoted by L(f) is also introduced and it allows

the proof of an inclusion relation for this class.

2010 Mathematics Subject Classification: 30C45.

Key words and phrases: Analytic function, differential

subordination, multiplier transformation, integral operator.

1 Introduction and preliminaries

Let H be the class of analytic functions in the open unit disc

U = {z ∈ C | |z| < 1},

An = {f ∈ H | f(z) = z + an+1z
n+1 + . . . , z ∈ U},

1Received 11 February, 2009

Accepted for publication (in revised form) 20 July, 2010
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with A1 = A,

S = {f ∈ A | f is univalent in U},

K =

{
f ∈ A | Re zf

′′(z)

f ′(z)
+ 1 > 0, z ∈ U

}
,

the class of convex functions in U ,

A(p, n)=

{
f ∈ H | f(z)=zp+

∞∑
k=p+n

akz
k, p, n∈N = {1, 2, . . . , }, z∈ U

}
.

In particular, we set

A(p, 1) = Ap =

{
f ∈ H | f(z) = zp +

∑
k=p+1

akz
k, p ∈ N, z ∈ U

}

and A(1, 1) = A.

For two functions f, g ∈ A(p, n), the Hadamard product (or convolu-

tion) (f ∗ g)(z) is defined, as usual, by

(f ∗ g)(z) := zp +
∞∑

k=p+n

akbkz
k = (g ∗ f)(z).

Let f and F be members of H. The function f is said to be subordi-

nate to F , or F is said to be superordinate to f , if there exists a function

w analytic in U , with w(0) = 0 and |w(z)| < 1 such that f(z) = F (w(z)).

In such a case we write f(z) ≺ F (z). If F is univalent, then f(z) ≺ F (z)

if and only if f(0) = F (0) and f(U) ⊂ F (U).

Definition 1. [13, p. 16] Let φ : C3 ×U → C and let h be univalent

in U . If p is analytic in U and satisfies the (second-order) differential

subordination

(1) ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z), z ∈ U,

then p is called a solution of the differential subordination. The univa-

lent function q is called a dominant of the solutions of the differential
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subordination, or more simply a dominant, if p ≺ q for all p satisfying

(1). A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1) is said

to be the best dominant (1). (Note that the best dominant is unique up

to a rotation of U).

In order to prove our main results we shall make use of the following

lemmas.

Lemma A. (Hallenbeck and Ruscheweyh [13, p. 71]) Let h be a

convex function in U , with h(0) = a, γ ̸= 0 and Re γ ≥ 0. If p ∈ H[a, n]

and

p(z) +
zp′(z)

γ
≺ h(z), z ∈ U

then

p(z) ≺ q(z) ≺ h(z), z ∈ U

where

q(z) =
γ

nzγ/n

∫ z

0

h(t)tγ/n−1dt.

The function q is convex and it is the best dominant.

2 Main results

Definition 2. For l, λ, β ∈ R, l ≥ 0, β ≥ 0, λ ≥ 0, n, p ∈ N, m ∈ N∪{0}
and f ∈ A(p, n), we define the multiplier transformation Ip(β,m, n;λ, l)

on A(p, n) by the following infinite series:

(2) Ip(β,m, n;λ, l)f(z)

:= zp +
∞∑

k=p+n

(1− λ)(p− k) + l +
(m+ k − 1)!

m!(k − 1)!

p+ l − k +
(m+ k − 1)!

m!(k − 1)!


β

(m+ k − 1)!

m!k!
akz

k,

z ∈ U .

Remark 1. For β ∈ N ∪ {0}, m = 1, p = 1, l = 0, the operator was

introduced and studied by Al-Oboudi [3] which reduces to the Sălăgean
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differential operator [15] for λ = 1. The operator I1(β, 1, n; 1, l)f(z) was

studied recently by Cho and Srivastava [7] and Cho and Kim [8]. The

operator I1(β, 1, n; 1, 1)f(z) was studied by Uralegaddi and Somanatha

[17], the operator I1(β, 1, n;λ, 0)f(z) was introduced by Acu and Owa [1]

and the operator Ip(β, 1, n; 1, l)f(z) was investigated recently by Kumar,

Taneja and Ravichandran [10]and Srivastava et al. [16]. The operator

Ip(0, 1, n;λ, l)f(z) was introduced and studied recently by A. Cătaş [6]

and the operator Ip(β, 1, n; 1, 0)f(z) was studied in [4], [9] and [12].

Properties. By using Definition 2, the following properties can be

easily obtained:

P1.

[
p+ l +

(m+ k − 1)!

m!(k − 1)!
− k

]
Ip(β + 1,m, n;λ, l)f(z)

=

[
p(1− λ) + l +

(m+ k − 1)!

m!(k − 1)!
− k

]
Ip(β,m, n;λ, l)f(z)

+λzI ′p(β,m, n;λ, l)f(z), z ∈ U.

P2. Ip(β1,m, n;λ, l)(Ip(β2,m, n;λ, l)f(z))

= Ip(β2,m, n;λ, l)(Ip(β1,m, n;λ, l)f(z)).

P3. If we let

φβ
p,m,n;λ,l(z) :=

:= zp +
∞∑

k=p+n

(1− λ)(p− k) + l +
(m+ k − 1)!

m!(k − 1)!

p+ l − k +
(m+ k − 1)!

m!(k − 1)!


β

(m+ k − 1)!

m!k!
zk

then

Ip(β,m, n;λ, l)f(z) = (f ∗ φβ
p,m,n;λ,l)(z).

For p = 1, r, t ∈ R, r + t = 1, f, g ∈ An we have:

P4. I1(β,m, n;λ, l)[rf(z) + tg(z)] = rI1(β,m, n;λ, l)f(z)

+tI1(β,m, n;λ, l)g(z), z ∈ U.
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P5. I1(β,m, n;λ, l)[zf
′(z)] = zI ′1(β,m, n;λ, l)f(z), z ∈ U.

Definition 3. Let 0 ≤ α < 1, m ∈ N ∪ {0}, p, n ∈ N, l, λ, β ∈ R,
l ≥ 0, λ ≥ 0, β ≥ 0. A function f ∈ A(p, n) is said to be in the class

Sα
p (β,m, n;λ, l) if it satisfies the following inequality

(3) Re I ′p(β,m, n;λ, l)f(z) > α, z ∈ U,

where Ip(β,m, n;λ, l)f(z) is the operator given by (2).

Remark 2. For β = 0, m = 1, α = 0 we obtain a univalence

criterion, Re f ′(z) > 0, [14].

For β = 0, m = 1 and 0 ≤ α < 1 we obtain the class of univalent

functions

Rα = {f ∈ A : Re f ′(z) > α, z ∈ U, 0 ≤ α < 1}.

The new introduced class was obtained earlier by A. Cătaş [6], using

a different method, namely subordination technique.

Theorem 1. If 0 ≤ α < 1, m ∈ N∪{0}, n ∈ N, l, λ, β ∈ R, l ≥ 0,

λ > 0, β ≥ 0, f ∈ A(1, n) = An,

E(m, l, k)

λ
> 0,

where

E(m, l, k) = 1 + l − k +
(m+ k − 1)!

m!(k − 1)!

then

(4) Sα
1 (β + 1,m, n;λ, l) ⊂ Sα

1 (δ,m, n;λ, l),

where

(5) δ = δ(α,m, n, l, k, λ)

= 2α− 1 + 2(1− α)
E(m, l, k)

λn
· σ
[
E(m, l, k)

λn

]
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and

(6) σ(x) =

∫ z

0

tx−1

1 + t
dt, z ∈ U.

Proof. Let f ∈ Sα
1 (β + 1,m, n;λ, l). From Definition 3 we have

(7) Re I ′1(β + 1,m, n;λ, l)f(z) > α, 0 ≤ α < 1, z ∈ U.

From property P1 we have:

(8) I1(β + 1,m, n;λ, l)f(z)

=
λzI ′1(β,m, n;λ, l)f(z) + [E(m, l, k)− λ] I1(β,m, n;λ, l)f(z)

E(m, l, k)

Differentiating (8), we obtain

(9) I ′1(β + 1,m, n;λ, l)f(z) = I ′1(β,m, n;λ, l)f(z)

+
λ

E(m, l, k)
z · I ′′1 (β,m, n;λ, l)f(z), z ∈ U

We let

(10) p(z) = I ′1(β,m, n;λ, l)f(z) = 1 + bnz
n + . . . , z ∈ U,

and we deduce p(0) = 1, p ∈ H[1, n].

Using (10) in (9), we have

(11) I ′1(β + 1,m, n;λ, l)f(z)

= p(z) +
λ

E(m, l, k)
zp′(z), z ∈ U.

Then (7) becomes

(12) Re

[
p(z) +

λ

E(m, l, k)
zp′(z)

]
> α, z ∈ U

which is equivalent to

(13) p(z) +
λ

E(m, l, k)
zp′(z) ≺ h(z)
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=
1 + (2α− 1)z

1 + z
, z ∈ U.

Since p(0) = h(0) = 1, by using Lemma A, we have

(14) p(z) ≺ q(z)

=
E(m, l, k)

λnz
E(m,l,k)

λn

∫ z

0

t
E(m,l,k)

λn
−1 · 1 + (2α− 1)t

1 + t
dt

= 2α− 1 + 2(1− α)
E(m, l, k)

λn
· 1

z
E(m,l,k)

λn

· σ(x)

where σ is given by (6).

The function q is convex and is the best dominant.

Since q is convex and q(U) is symmetric with respect to the real axis,

we deduce

(15) Re p(z) > inf
|z|<1

Re {q(z)} = Re q(1)

=2α− 1 + 2(1− α)
E(m, l, k)

λn
σ

(
E(m, l, k)

λn

)
.

Using (10) in (15), we obtain

Re I ′1(β,m, n;λ, l)f(z) > δ = δ(α, l, k,m, n)

=2α− 1 +
2(1− α) [E(m, l, k)]

λn
σ

[
E(m, l, k)

λn

]
.

From Definition 3, we have f ∈ Sα
1 (δ,m, n;λ, l). Since f ∈ Sα

1 (β +

1,m, n;λ, l), we obtain Sα
1 (β + 1,m, n;λ, l) ⊂ Sα

1 (β,m, n;λ, l).

Definition 4. Let 0 ≤ α < 1, m ∈ N ∪ {0}, p, n ∈ N, l, λ, β ∈ R,
λ ≥ 1, β ≥ 0, f ∈ A(p, n). We denote by L : A(p, n) → A(p, n) the

integral operator defined by L(f) = F , where F is given by

(23) F (z) =
p+ E(m, l, k)− 1

λz
p(1−λ)+E(m,l,k)−1

λ

∫ z

0

f(t) · t
p(1−λ)+E(m,l,k)−1

λ
−1dt
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Remark. 1) F (z) = zp +
∞∑

k=p+n

bkz
k, z ∈ U .

2) For p = 1, l = 0, m = 1, λ = 1, f ∈ An,

F (z) =

∫ z

0

f(t)

t
,

we obtain the Alexander operator [2].

3) For p = 1, m = 1, λ = 1, l = 1, f ∈ An,

F (z) =
2

z

∫ z

0

f(t)dt,

we obtain the Libera operator [3].

4) For p = 1, l ≥ 0, m = 1, λ = 1, f ∈ An,

F (z) =
l + 1

zl

∫ z

0

f(t)tl−1dt,

we obtain the Bernardi operator [5].

5) For p ∈ N, l > 0, m = 1, λ ≥ 1, f ∈ Ap,

F (z) =
p+ l

λz
p(1−λ)+l

λ

∫ z

0

f(t)t
p(1−λ)+l

λ dt

was defined in [6].

Theorem 2. Let 0 ≤ α < 1, m ∈ N∪ {0}, p = 1, n ∈ N, l, λ, β ∈ R,
λ ≥ 1, β ≥ 0 and f ∈ An. Then f belongs to the class Sα

1 (β,m, n;λ, l) if

and only if F defined by (23) belong to the class Sα
1 (β + 1,m, n;λ, l).

Proof. (i) If we let f ∈ Sα
1 (β,m, n;λ, l), then from Definition 3, we

have:

(24) Re I ′1(β,m, n;λ, l)f(z) > α, z ∈ U.

From (23) we have

(25) z
(1−λ)+E(m,l,k)−1

λ F (z)
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= [E(m, l, k)] ·
∫ z

0

f(t) · t
(1−λ)+E(m,l,k)−1

λ
−1dt.

Differentiating (25) we obtain

(26) [E(m, l, k)− λ]F (z) + λzF ′(z)

= [E(m, l, k)− λ] f(z).

Since F ∈ An, f ∈ An, using P4 and P5 we have

(27) [E(m, l, k)− λ] I1(β,m, n;λ, l)F (z)

+λz[I1(β,m, n;λ, l)F (z)]

= [E(m, l, k)− λ] I1(β,m, n;λ, l)f(z), z ∈ U.

Using P1, (27) becomes

(28) [E(m, l, k)− λ] I1(β + 1,m, n;λ, l)F (z)

= [E(m, l, k)− λ] I1(β,m, n;λ, l)f(z), z ∈ U,

which is equivalent to

(29) I1(β + 1,m, n;λ, l)F (z) = I1(β,m, n;λ, l)f(z), z ∈ U.

From (29) we deduce

(30) Re I ′1(β + 1,m, n;λ, l)F (z) = Re I ′1(β,m, n;λ, l)f(z), z ∈ U.

From (24) we have

(32) Re I ′1(β + 1,m, n;λ, l)F (z) > α, z ∈ U

which implies F ∈ Sα
1 (β + 1,m, n;λ, l).

(ii) If we suppose that F ∈ Sα
1 (β + 1,m, n;λ, l), then using (30), we

also get f ∈ Sα
1 (β,m, n;λ, l).
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Legendre-Zhang’s Conjecture & Gilbreath’s
Conjecture and Proofs Thereof 1

Zhang Tianshu

Abstract

If reduce limits which contain odd primes by a half for Leg-

endre’s conjecture, then there is at least an odd prime within the

either half likewise, this is exactly the Legendre-Zhang’s conjec-

ture. We shall first prove the Legendre-Zhang’s conjecture by

mathematical induction with the aid of two number axes’ positive

half lines whose directions reverse from each other. Successively,

prove the Gilbreath’s conjecture by mathematical induction with

the aid of the got result.
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1 Basic Concepts

The Gilbreath’s conjecture was first suggested in 1958 by the American

mathematician and amateur magician Norman L. Gilbreath following

some doodling on a napkin.

He started by writing down the first few primes.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,. . .

Under these he put their differences:

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, . . .

Under these he put the unsigned difference of the differences.

1, 0, 2, 2, 2, 2, 2, 2, 4, . . .

And he continued this process of finding iterated differences:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, . . .

1, 0, 2, 2, 2, 2, 2, 2, 4, . . .

1, 2, 0, 0, 0, 0, 0, 2, . . .

1, 2, 0, 0, 0, 0, 2, . . .

1, 2, 0, 0, 0, 2, . . .

1, 2, 0, 0, 2, . . .

1, 2, 0, 2, . . .

1, 2, 2, . . .

1, 0, . . .

1, . . .

The Gilbreath’s Conjecture is that the numbers in the first column

except for first number of first rank are all one.

The Legendre’s conjecture is known as an age-old problem. Is there

always a prime between n2 and (n+1)2 for every positive integer n?

If odd numbers between n2 and (n+1)2 are divided into two parts by

n(n+1) except for n=1, then Legendre-Zhang’s conjecture asserts that

there is always an odd prime in either such part. Manifestly the Legendre-

Zhang’s conjecture is better than the Legendre’s conjecture.



Legendre-Zhang’s Conjecture & Gilbreath’s Conjecture ... 89

Please, see the sequence of integers in relation to the Legendre-Zhang’s

conjecture as listed below.

1(1+1), 3, 22, 5, 2(2+1), 7, 32,11, 3(3+1), 13, 42,17, 19, 4(4+1), 23,

52,29, 5(5+1), 31, 62, 37, 41, 6(6+1), 43, 47, 72, 53, 7(7+1), 59, 61,

82,67, 71,8(8+1), 73, 79, 92,83, 89, 9(9+1), 97, 102, 101, 103, 107, 109,

10(10+1), 113,112, 127, 131, 11(11+1), 137, 139, 122,149, 151, 12(12+1),

157, 163, 167, 132, 173, 179, 181, 13(13+1), 191, 193, 142, 197, 199,

14(14+1), 211, 223, 152,227, 229, 233, 239, 15(15+1), 241, 251, 162, . . .

Thus, the Legendre-Zhang’s conjecture states concretely that there is

at least an odd prime between n(n+1) and (n+1)2;and there is at least an

odd prime between (n+1)2and (n+1)(n+2), where n is a nature number.

When n is an odd number, there is following a series of numbers.

There are (n+ 1)/2 odd numbers between n(n+1) and (n+1)2;

There are (n+ 1)/2 odd numbers between (n+1)2 and (n+1)(n+2);

There are (n+ 1)/2 odd numbers between (n+1)(n+2) and (n+2)2;

There are (n+ 1)/2 odd numbers between (n+2)2 and (n+2)(n+3) ;

There are (n+ 3)/2 odd numbers between (n+2)(n+3) and (n+3)2;

There are (n+ 3)/2 odd numbers between (n+3)2 and (n+3)(n+4);

There are (n+ 3)/2 odd numbers between (n+3)(n+4) and (n+4)2;

There are (n+ 3)/2 odd numbers between (n+4)2 and (n+4)(n+5) ;

There are (n + 5)/2 odd numbers between (n+4)(n+5) and (n+5)2

. . .

Above has mentioned that odd numbers between n2 and (n+1)2 are

divided into two parts by n(n+1), then we regard every part as a special

segment. So begin with odd number 3 alone at 1 special segment between

1(1+1) and 22, afterwards, add an odd number at each special segment

after per consecutive four special segments. For example, 1(1+1) 1 22

1 2(2+1) 1 32 1 3(3+1) 2 42 2 4(4+1) 2 52 2 5(5+1) 3

62 3 6(6+1) 3 72 3 7(7+1) 4 82 4 8(8+1) 4 92 4 9(9+1) 5

102 5 10(10+1) 5 112 5 11(11+1) 6 122 6 12(12+1) 6 132 6

13(13+1) 7 142 7 14(14+1) 7 152 7 15(15+1) . . .
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In addition, we stipulate that odd number (n+2)2 is added into special

segment between (n+2)2 and (n+2)(n+3), where n is an odd number.

Obviously, all special segments both exist within the sequence of pos-

itive integers, and exist at the number axis’s positive half line.

We number the ordinal number of seriate each and every special seg-

ment by seriate natural numbers ≥1, whether special segments exist in

the series of positive integers, or they exist at the number axis’s positive

half line. Then, numbers of odd numbers at (1+4t), at (2+4t) and at

(3+4t) is all 1+t; yet the number of odd points at (4+4t) is 2+t, where

t ≥ 0.

Namely, numbers of odd numbers at 1, at 2 and at 3 special segment

is all 1;

Numbers of odd points at 4, at 5, at 6 and at 7 special segment is all

2;

Numbers of odd points at 8, at 9, at 10 and at 11 special segment is

all 3;

Numbers of odd points at 12, at 13, at 14 and at 15 special segment

is all 4;

Numbers of odd points at 16, at 17, at 18 and at 19 special segment

is all 5 . . .

We shall prove indirectly the Legendre-Zhang’s conjecture with the

aid of odd points at positive half line of the number axis, thereinafter.

On purpose of watching convenience, for the number axis’s positive

half line, we let it begins with odd point 3, and it is marked merely

odd points, and the length between every two consecutive odd points

is just the same. We term a distance whereby each odd prime point

and odd point 3 act as two endmost points “a prime length”. “PL” is

abbreviated from “prime length”, and “PLS” denotes the plural of PL.

From odd prime point 3 to odd point 3 according to the definition is a

PL as well, nevertheless, its length is equal to zero.

We use two positive half lines of number axes, yet their directions
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reverse from each other, and endmost point 3 of either half line can

coincide with any odd point of another. For example, endmost point 3

of either half line coincides with odd point P of another. Please, see first

illustration below:

3 5 7 P-4 P-2 P

P P-2 P-4 7 5 3

2 First Illustration

We term PLS at the leftward direction’s half line “reverse PLS”, and

RPLS is abbreviated from reverse PLS.

RPLS whereby any odd point P at the rightward direction’s half line

acts as a common right endmost point are written as RPLSP . One within

RPLSP is written as a RPLP .

When P=3, the RPL is written as RPL3. Namely RPL3 is under the

case that odd point 3 at the leftward direction’s half line coincides with

odd point 3 at the rightward direction’s half line.

The common right endmost point of RPLSP is odd point P, and

part left endmost points of RPLSP coincide monogamously with part odd

prime points at line segment 3P of the rightward direction’s half line.

At line segment 3P, odd prime points at the rightward direction’s half

line and left endmost points of RPLSP at the leftward direction’s half line

assume always one-to-one bilateral symmetry whereby the center point

of line segment 3P acts as the symmetric center.

At the rightward direction’s half line, begin with an odd point B,

leftwards take seriatim each odd point as a common right endmost point

of RPLSB−2f , then, part left endmost points of RPLSB−2f monogamously

coincide with part odd prime points at line segment 3B of the rightward

direction’s half line, where f =0, 1, 2, 3, . . . c, . . . in proper order.

Suppose that f increases orderly to c, and left endmost points of∑
RPLSB−2f [0≤f≤c] just monogamously coincide with all odd prime
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points at line segment 3B of the rightward direction’s half line, then,

we consider line segment B(B-2c) as shortest line segment of common

right endmost points of RPLSB−2f at line segment 3B. “SCRP” is ab-

breviated from “shortest line segment of common right endmost points”.

So, such line segment B(B-2c) is written as SCRP B(B-2c) within line

segment 3B too. Let A=B-2c, SCRP B(B-2c) is exactly SCRP AB.

If there is only a CRP at a shorter line segment which begins with

odd point 3, then the odd point is an odd prime point surely, because

odd prime point 3 can only coincide with the left endmost point of a

RPL whereby an odd prime point acts as the right endmost point.

At line segment 3B, we regard odd prime points which first coin-

cide with left endmost points of RPLSB−2f as special odd prime points

which left endmost points of RPLSB−2f coincide with, where 0≤f≤c.

Manifestly, all odd prime points which monogamously coincide with left

endmost points of RPLSBare namely special odd prime points which left

endmost points of RPLSBcoincide with. Yet special odd prime points

which left endmost points of RPLSAcoincide with are totally different

from special odd prime points which left endmost points of
∑

RPLSX [B

≥ X ≥A+2] coincide with.

Thus, all odd prime points at line segment 3B are namely special odd

prime points which left endmost points of
∑

RPLSB−2f [0≤f≤c] coincide

with.

For example, when B=95, there are four odd points at SCRP AB, then

A=89. For the distribution of odd prime points which monogamously

coincide with left endmost points of RPLSF , where F=95, 93, 91 and 89,

please, see following second illustration:

Odd prime point: 19 31 37 61 67 79

Left end points of RPLS95: 79 67 61 37 31 19

Odd prime point: 7 13 17 23 29 37 43 53 59 67 73 79 83 89

Left end points of RPLS93: 89 83 79 73 67 59 53 43 37 29 23 17 13 7

Odd prime point: 5 11 23 41 47 53 71 83 89
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Left end points of RPLS91: 89 83 71 53 47 41 23 11 5

Odd prime point: 3 13 19 31 61 73 79 89

Left end points of RPLS89: 89 79 73 61 31 19 13 3

3 Second Illustration

Let us continue to leftwards take odd point A-2 as a common right end-

most point of RPLSA−2. Since left endmost points of
∑

RPLSB−2f [0≤f≤c]

just monogamously coincide with all odd prime points at line segment

3B of the rightward direction’s half line, yet odd prime points which

left endmost points of
∑

RPLSB−2e[1≤e≤c] coincide with are constant,

therefore, special odd prime points which left endmost points of RPLSA−2

coincide with belong within odd prime points which left endmost points

of RPLSBcoincide with.

Since odd prime point 3 can only coincide with the left endmost point

of a RPL whereby an odd prime point at the rightward direction’s half

line acts as the right endmost point, therefore, provided B is an only odd

prime point, and others are all odd composite points at SCRP AB, then

A-2 is an odd prime point. In addition, there is SCRP (A-2)(B-2) within

line segment 3(B-2).

Since odd prime point 3 can only coincide with the left endmost point

of a RPL whereby an odd prime point at the rightward direction’s half

line acts as the right endmost point, thus any SCRP contains at least an

odd prime point. Provided there is only a CRP at a shorter line segment

which begins with 3, then this CRP is an odd prime point too.

If A is an only odd prime point, and others are all odd composite

points at SCRP AB, then B+2 is an odd prime point. So, there is SCRP

A(B+2) within line segment 3(B+2). Here, SCRP A(B+2) within line

segment 3(B+2) is an odd point more than SCRP AB within line segment

3B. Manifestly, the odd point is exactly odd prime point B+2.

Factual proof, that the aforesaid case is unique under these circum-
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stances that numbers of odd points at two SCRP which share at least an

odd point are inequality from each other.

Conversely, we may too begin with odd point A, rightwards take

seriatim each odd point as a common right endmost point of RPLSA+2f ,

when part left endmost points of RPLSA+2f monogamously coincide just

with all odd prime points at line segment 3(A+2f), where f ≥ 0, then

there is SCRP A(A+2f) within line segment 3(A+2f). In reality, this is

known as A+2f =B, so SCRP A(A+2f) is exactly SCRP AB. But, at

here, special odd prime points which left endmost points of RPLSA+2f

coincide with are determined according to from left to right odd points

as common right endmost points of RPLSA+2f .

Take seriatim each odd point as a common right endmost point of

RPLS, whether the order is from right to left, or from left to right, there

is always at least a special odd prime point which coincides with a left

endmost point of RPLS whereby each odd point at SCRP AB acts as a

common right endmost point.

Since the order of taking common right endmost points of RPLS can

be each other’s reverse directions, so special odd prime points which

coincide with left endmost points of RPLS whereby an identical odd

point acts as the common right endmost point are not all alike on two

directions.

There are (B-A+2)/2 odd points at SCRP AB. One complete SCRP

must contain all odd points at the SCRP. Basically, a complete SCRP is

able to be substituted by all odd points at the SCRP. Instance SCRP AB,

SCRP AB is a complete SCRP within line segment 3B, and (B-A+2)/2

odd points at SCRP AB can substitute for SCRP AB. If reduce any odd

point at SCRP AB, then the remainder is not a SCRP.
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4 The Proof of the Legendre-Zhang’s

Conjecture

Since there is at least an odd prime point at any complete SCRP, or

when there is only a CRP at a shorter line segment which begins with

3, the CRP is an odd prime point according to preceding proof, thus let

us first prove that there is a complete SCRP at y special segment by

mathematical induction, where y is any natural number.

(1). When y=y1=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19 and 20, each number of odd points at y1 special segment in

the proper order is orderly 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5,

5, 5, 5 and 6. Also, each number of odd points at each SCRP which

contains most right odd point within y1 special segment in the proper

order is orderly 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4 and 6.

This shows that there is a CRP alone or a complete SCRP within y1

special segment.

(2). When y=k, suppose that there is a complete SCRP within k

special segment, where k ≥ 20.

(3). When y=k+1, prove that there is a complete SCRP within

(k+1) special segment too.

Proof. Since there is a complete SCRP within k special segment,

then the complete SCRP contains at least an odd prime point.

Since odd prime point 3 can only coincide with the left endmost point

of a RPL whereby an odd prime point at the rightward direction’s half

line acts as the right endmost point, thus, there is at least an odd prime

point at the complete SCRP within k special segment.

Suppose that most right or unique odd prime point at k special seg-

ment is Pm, then, let a complete SCRP within k special segment contain

Pm. Moreover, suppose that the left endmost point of the complete SCRP

is odd point E, and its right endmost point is odd point F. Of course,

Pm at the here may become to E or F.
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There are (F-E+2)/2 odd points at SCRP EF. Also let F+2=G, and

2F-E+2=H or 2F-E+4=H, then line segment GH is exactly SCRP GH

within line segment 3H. Either the number of odd points at SCRP GH

within line segment 3H is equal to the number of odd points at SCRP

EF within line segment 3F, or SCRP GH within line segment 3H is

an odd point more than SCRP EF within line segment 3F. But also,

SCRP GH within line segment 3H contains at least an odd prime point.

Undoubtedly, the odd prime point exists on the right side of k special

segment.

From the preceding exposition, we know that either the number of

odd points at k special segment is equal to the number of odd points at

(k+1) special segment, or (k+1) special segment is an odd point more

than k special segment. Therefore, SCRP GH exists within (k+1) special

segment. Consequently, there is at least an odd prime point at (k+1)

special segment.

Start from a proven special segment to prove the next special segment

which adjoins the proven special segment for each once, then after via

infinite times, there are infinitely many proven special segments. Namely,

let y is equal to each and every natural number, then inevitably reach

a conclusion that there is at least an odd prime point at every special

segment.

Or rather, there is at least an odd prime between n(n+1) and (n+1)2;and

there is at least an odd prime between (n+1)2and (n+1)(n+2), where n

expresses each and every nature number.

Consequently the Legendre-Zhang’s conjecture does hold water by

proof.

5 The Proof of the Gilbreath’s Conjecture

First, we number the ordinal number of each and every odd prime from

small to great. Namely, we regard odd prime 3 as 1 odd prime, and write
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odd prime 3 down P1; also regard odd prime 5 as 2 odd prime, and write

odd prime 5 down P2 . . . and so on and so forth, reckon odd prime Pm

as m odd prime.

On the supposition that m is the ordinal number of most right odd

prime at a row of consecutive odd primes which begin 3, then the number

of the consecutive primes from even prime 2 to odd prime Pm is m+1

altogether.

Let us review the set rule of the Gilbreath’s Conjecture, namely after

write down consecutive primes which began with 2 into a row, count

out a difference of every two adjacent primes, and put each difference

underneath the left prime, and continued this process of finding iterated

unsigned differences.

After proven the Legendre-Zhang’s conjecture, let us successively

prove the Gilbreath’s conjecture by mathematical induction with the aid

of the result have gained, as follows.

(1). When m=20, Pm=73, all operational results and the arrange-

ment thereof according to the set rule suit the Gilbreath’s conjecture.

Please, see following rows and columns.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,

73 . . .

1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 8, 6, 6, 2 . . .

1, 0, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 0, 2, 2, 0, 4 . . .

1, 2, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 4 . . .

1, 2, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 2, 0, 2, 2 2 . . .

1, 2, 0, 0, 0, 2, 0, 0, 0, 2, 0, 2, 2, 2, 0, 0 . . .

1, 2, 0, 0, 2, 2, 0, 0, 2, 2, 2, 0, 0, 2, 0 . . .

1, 2, 0, 2, 0, 2, 0, 2, 0, 0, 2, 0, 2, 2 . . .

1, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 0 . . .

1, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2 . . .

1, 0, 0, 0, 0, 0, 2, 0, 2, 0, 2 . . .

1, 0, 0, 0, 0, 2, 2, 2, 2, 2 . . .
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1, 0, 0, 0, 2, 0, 0, 0, 0 . . .

1, 0, 0, 2, 2, 0, 0, 0 . . .

1, 0, 2, 0, 2, 0, 0 . . .

1, 2, 2, 2, 2, 0 . . .

1, 0, 0, 0, 2 . . .

1, 0, 0, 2 . . .

1, 0, 2 . . .

1, 2 . . .

1 . . .

When Pm=73, 73 exists at 14 special segment due to 1(1+1) 22as 1

special segment, 22 2(2+1) as 2 special segment, 2(2+1) 32 as 3 special

segment. . . 82 8(8+1) as 14 special segment, just right, 73 exists between

82 and 8(8+1).

(2). When m=c, suppose that all operational results and the arrange-

ment thereof according to the set rule suit the Gilbreath’s conjecture,

where c≥20.

(3). When m=c+1, prove that all operational results and the ar-

rangement thereof according to the set rule suit the Gilbreath’s conjec-

ture too.

Proof. Let us arrange 2 and from small to great odd numbers which

begin with 3 into a row, and reckon the row as first row. Then put each

difference of every two adjacent integers underneath each left integer.

Furthermore, we continue this process of finding iterated unsigned dif-

ferences. Evidently, except for first integer in first row, numbers in the

first column are all one.

If delete odd composite numbers which contain prime factor 3 in first

row, afterwards make operating and arranging unsigned differences like

the aforementioned way of doing, then except for first integer in first row,

numbers in the first column are all one.

If continue to delete odd composite numbers which contain prime

factor 5 in first row, afterwards make operating and arranging unsigned
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differences like the aforementioned way of doing, then except for first

integer in first row, numbers in the first column are all one.

. . .

If continue to delete odd composite numbers which contain prime

factor Pa in first row, and suppose that except for first integer in first

rank, numbers in the first column are all one.

Why numbers in the first column except for first integer in first row are

all one? Because, the biggest difference of two adjacent odd numbers in

first row after delete odd composite numbers which contain prime factors

from 3 to Pa is always smaller than the sum of unsigned differences on the

left of the biggest difference. If subtract the biggest difference from the

right part of the all unsigned differences, then, the remainder is exactly

a proven series of integers.

From proven the Legendre-Zhang’s conjecture, we know that there is

at least an odd prime at each and every special segment.

Suppose that odd prime Pc exists at y special segment. If odd prime

Pc+1exists at y special segment too, then the number of odd numbers

between pc and pc+1 is less than the number of odd numbers at y special

segment.

If odd prime Pc+1 exists at (y+1) special segment, then the number of

odd numbers between pc and pc+1 is less than the number of odd numbers

at y special segment plus (y+1) special segment.

From preceding basic concepts, we know that the most front and most

behind two special segments within consecutive four special segments

differ by one of odd number.

Thus, y and (y+1) special segments is one or two odd numbers more

than (y-1) and (y-2) special segments.

Therefore, odd numbers between pc and pc+1 are not more than odd

numbers at (y-1) and (y-2) special segments.

In addition, there is at least an odd prime at every special segment,

including (y-1) and (y-2) special segments.
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Thus, either the difference of pc from pc+1is less than the sum of

unsigned differences of every two adjacent odd primes at (y-1) special

segment, or the difference of pc from pc+1is less than the sum of unsigned

differences of every two adjacent odd primes at (y-1) and (y-2) special

segments.

Therefore, when m=c+1, after above-mentioned either sum minus

corresponding a difference, the remainder at first row is a proven series

of primes.

Consequently, when m=c+1, all operational results and the arrange-

ment thereof according to the set rule suit the Gilbreath’s conjecture

too.

Proceed from a proven conclusion to add a larger adjacent odd prime

for each once, then via infinite times, namely let m to equal each and

every natural number, or rather, let 2 and all odd primes are putting in

first row, afterwards make all operational results and the arrangement

thereof according to the set rule, then we reach inevitably a conclusion

that except for first integer in first row, the numbers in the first column

are all one. Namely the Gilbreath’s conjecture holds water by proof.
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Abstract

In this paper, we introduce a subclass P ∗(p,A,B, α, j) of an-

alytic and p-valent functions with negative coefficients. We ob-

tain coefficient estimates, distortion theorem , closure theorems

and radii of close-to-convexity, starlikeness and convexity of order

ϕ (0 ≤ ϕ < p) for this class. We also obtain class preserving inte-

gral operators for this class. Furthermore, several results for the

modified Hadamard products of functions belonging to the class

P ∗(p,A,B, α, j) are also given.
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1 Introduction

Let A(p) denote the class of functions of the form:

(1.1) f(z) = zp +
∞∑
n=1

ap+n z
p+n(p ∈ N = {1, 2, ...})

which are analytic and p-valent in the open unit disc U = {z ∈ C and

|z| < 1}. Let f(z) and g(z) be analytic in U. Then the function f(z) is

said to be subordinate to g(z) if there exists a function w(z) analytic in U,

with w(0) = 0 and |w(z)| < 1(z ∈ U), such that f(z) = g(w(z))(z ∈ U).

We denote this subordination by f(z) ≺ g(z). A function f(z) ∈ A(p) is

said to be in the class Rp,j(α) if it satisfies the following inequality:

(1.2) Re

{
f (j)(z)

zp−j

}
> α (z ∈ U ; 0 ≤ α < δ(p, j); 0 ≤ j ≤ p),

where

(1.3) δ(p, j) =
p!

(p− j)!
=

{
p(p− 1)......(p− j − 1) (j ̸= 0)

1 (j = 0).

The class Rp,j(α) was studied by Saitoh ( [11] , [12] and [13] ), Patel and

Mohanty [10] and Srivastava et al. ( [16] and [17] ) ( see also Nunokawa

[8]).

ForA,B fixed, −1 ≤ A < B ≤ 1, 0 < B ≤ 1, 0 ≤ α < δ(p, j), 0 ≤
j ≤ p and p ∈ N, we say that f(z) ∈ A(p) is in the class P (p,A,B, α, j)

if it satisfies the following subordination condition:

(1.4)
1

(δ(p, j)− α)
(
f (j)(z)

zp−j
− α) ≺ 1 + Az

1 +Bz
(z ∈ U),

or , equivalently , f(z) ∈ P (p,A,B, α, j) if and only if

(1.5)

∣∣∣∣∣∣∣∣
f (j)(z)

zp−j
− δ(p, j)

B
f (j)(z)

zp−j
− [δ(p, j)B + (A−B)(δ(p, j)− α)]

∣∣∣∣∣∣∣∣ < 1(z ∈ U).
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We note that:

(i)P (p,A,B, 0, 1) = Sp(A,B) (Chen [4]);

(ii)P (p, βA, βB, α, 1) = Sp(α,β,A,B)(0 ≤α< p, 0 < β≤1) (Aouf [3]);

(iii)P (p,−1, 1, α, 1) = Sp(α)(0 ≤ α < p) (Owa [9] );

(iv)P (1, A,B, 0, 1) = R(A,B)(Mehrok [7]);

(v)P (p,A,B, 0, j) = Rp,j(1, A,B)(0 ≤ j ≤ p) and P (p,−1, 1, α, j) =

Rp,j(1, α)(0 ≤ α < δ(p, j); 0 ≤ j ≤ p)(Srivastava et al.[17]).

Also we note that :

(i) P (p, α,A,B, p) = Pp(α,A,B)

=

{
f(z) ∈ A(p) :

∣∣∣∣ f (p)(z)− p!

Bf (p)(z)− [p!B + (A−B)(p!− α)]

∣∣∣∣ < 1,

(1.6) (z ∈ U, −1 ≤ A < B ≤ 1 , 0 < B ≤ 1, 0 ≤ α < p!, p ∈ N );

(ii) P (p, α,−β, β, p) = Pp(α, β)

=

{
f(z) ∈ A(p) :

∣∣∣∣ f (p)(z)− p!

f (p)(z) + p!− 2α

∣∣∣∣ < β,

(1.7) (z ∈ U, 0 ≤ α < p! , 0 < β ≤ 1, p ∈ N )} ;

(iii) P (p, 0, A,B, p) = Rp(A,B)

(1.8) =

{
f(z) ∈ A(p) : f (p)(z) ≺ p!

1 + Az

1 +Bz
, z ∈ U

}
.

Let T (p) denote the subclass of A(p) consisting of functions of the

form:

(1.9) f(z) = zp −
∞∑
n=1

ap+n z
p+n(ap+n ≥ 0; p ∈ N).

Further, we define the classes P ∗(p,A,B, α, j), R∗
p,j(α), P

∗
p (α,A,B),

P ∗
p (α, β) and R

∗
p(A,B) by:

(1.10) P ∗(p,A,B, α, j) = P (p,A,B, α, j) ∩ T (p);
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(1.11) R∗
p,j(α) = Rp,j(α) ∩ T (p);

(1.12) P ∗
p (α,A,B) = Pp(α,A,B) ∩ T (p);

(1.13) P ∗
p (α, β) = Pp(α, β) ∩ T (p);

and

(1.14) R∗
p(A,B) = Rp(A,B) ∩ T (p).

We note that, by specializing the parameters A,B, α, p and j, we obtain

the following subclasses studied by various authors:

(i)P ∗(p,A,B, α, 1) = P ∗(p,A,B, α) (Aouf [1]),

(ii)P ∗(p,−β, β, α, 1) = P ∗
p (α, β)(0 ≤ α < p, 0 < β ≤ 1) (Aouf [2]);

(iii)P ∗(p,A,B, 0, 1) = P ∗(p,A,B) (Shukla and Dashrath [15]);

(iv) P ∗(p,−1, 1, α, 0) = Fp(1, α p)(0 ≤ α < 1) and P ∗(p,−1, 1, α, 1) =

Fp(1, α)(0 ≤ α < p)( Lee et al. [6]);

(v) P ∗(1,−β, β, α, 1)=P ∗(α,β)(0≤α<1; 0<β≤1) (Gupta and Jain[5]).

2 Coefficient Estimates

Theorem 1 Let the function f(z) be defined by (1.9). Then f(z) ∈
P ∗(p,A,B, α, j) if and only if

(2.1)
∞∑
n=1

(1 +B)δ(p+ n, j)ap+n ≤ (B − A)(δ(p, j)− α).

Proof. Assume that the inequality (2.1) holds true and let |z| = 1. Then

we have∣∣∣∣f (j)(z)

zp−j
− δ(p, j)

∣∣∣∣− ∣∣∣∣Bf (j)(z)

zp−j
− [δ(p, j)B + (A−B)(δ(p, j)− α)]

∣∣∣∣
=

∣∣∣∣∣−
∞∑
n=1

δ(p+ n, j)ap+nz
n

∣∣∣∣∣−
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∣∣∣∣∣(B − A)(δ(p, j)− α)−
∞∑
n=1

Bδ(p+ n, j) ap+nz
n

∣∣∣∣∣
≤

∞∑
n=1

(1 +B)δ(p+ n, j)ap+n − (B − A)(δ(p, j)− α) ≤ 0,

by hypothesis. Hence, by the maximum modulus theorem, we have

f(z) ∈ P ∗(p,A,B, α, j).

Conversely, suppose that∣∣∣∣∣∣∣∣
f (j)(z)

zp−j
− δ(p, j)

B
f (j)(z)

zp−j
− [δ(p, j)B + (A−B)(δ(p, j)− α)]

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
−

∞∑
n=1

δ(p+ n, j)ap+nz
n

(A−B)(δ(p, j)− α)−
∞∑
n=1

Bδ(p+ n, j)ap+nzn

∣∣∣∣∣∣∣∣ < 1(z ∈ U).

Since |Re(z)| ≤ |z| for all z, we have

(2.2)

Re


∞∑
n=1

δ(p+ n, j)ap+nz
n

(A−B)(δ(p, j)− α)−
∞∑
n=1

Bδ(p+ n, j)ap+nzn

 < 1(z ∈ U).

Choosing values of z on the real axis so that
f (j)(z)

zp−j
is real. Upon clearing

the denominator in (2.2) and letting z → 1− through real values , we

obtain

(2.3)
∞∑
n=1

(1 +B)δ(p+ n, j)ap+n ≤ (B − A)(δ(p, j)− α),

which leads us at once to (2.1). This completes the proof of Theorem 1.
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Corollary 1 Let the function f(z) defined by (1.9) be in the class

P ∗(p,A,B, α, j). Then we have

(2.4) ap+n ≤ (B − A)(δ(p, j)− α)

(1 +B)δ(p+ n, j)
(p, n ∈ N).

The result is sharp for the function f(z) given by

(2.5) f(z) = zp − (B − A)(δ(p, j)− α)

(1 +B)δ(p+ n, j)
zp+n(p, n ∈ N).

3 Distortion Theorems

Theorem 2 Let the function f(z) defined by (1.9) be in the class

P ∗(p,A,B, α, j). Then for |z| = r < 1,

rp − (B − A)(δ(p, j)− α)

(1 +B)δ(p+ 1, j)
rp+1 ≤ |f(z)| ≤

(3.1) rp +
(B − A)(δ(p, j)− α)

(1 +B)δ(p+ 1, j)
rp+1

and

prp−1 − (B − A)(δ(p, j)− α)(p+ 1)

(1 +B)δ(p+ 1, j)
rp ≤

∣∣∣f ′
(z)
∣∣∣ ≤

(3.2) prp−1 +
(B − A)(δ(p, j)− α)(p+ 1)

(1 +B)δ(p+ 1, j)
rp.

The equality in (3.1) and (3.2) are attained for the function f(z) given

by

(3.3) f(z) = zp − (B − A)(δ(p, j)− α)

(1 +B)δ(p+ 1, j)
zp+1(p ∈ N).

Proof. Since f(z) ∈ P ∗(p,A,B, α, j), in view of Theorem 1, we have

(1+B)δ(p+1, j)
∞∑
n=1

ap+n ≤
∞∑
n=1

(1+B)δ(p+n, j)ap+n ≤ (B−A)(δ(p, j)−α),
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which evidently yields

(3.4)
∞∑
n=1

ap+n ≤ (B − A)(δ(p, j)− α)

(1 +B)δ(p+ 1, j)
.

Consequently, for |z| = r < 1, we obtain

|f(z)| ≤ rp + rp+1

∞∑
n=1

ap+n

≤ rp +
(B − A)(δ(p, j)− α)

(1 +B)δ(p+ 1, j)
rp+1

and

|f(z)| ≥ rp − rp+1

∞∑
n=1

ap+n

≥ rp − (B − A)(δ(p, j)− α)

(1 +B)δ(p+ 1, j)
rp+1

which prove the assertion (3.1) of Theorem 2. Also from Theorem 1,

it follows that

(3.5)
∞∑
n=1

(p+ n)ap+n ≤ (B − A)(δ(p, j)− α)(p+ 1)

(1 +B)δ(p+ 1, j)
.

Consequently, for |z| = r < 1, we have

∣∣∣f ′
(z)
∣∣∣ ≤ prp−1 +

∞∑
n=1

(p+ n)ap+n r
p+n−1

≤ prp−1 + rp
∞∑
n=1

(p+ n)ap+n

≤ prp−1 +
(B − A)(δ(p, j)− α)(p+ 1)

(1 +B)δ(p+ 1, j)
rp
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and ∣∣∣f ′
(z)
∣∣∣ ≥ prp−1 −

∞∑
n=1

(p+ n)ap+n r
p+n−1

≥ prp−1 − rp
∞∑
n=1

(p+ n)ap+n

≥ prp−1 − (B − A)(δ(p, j)− α)(p+ 1)

(1 +B)δ(p+ 1, j)
rp,

which prove the assertion (3.2) of Theorem 2. Finally, it is easy to

see that the bounds in (3.1) and (3.2) are attained for the function f(z)

given already by (3.3).

Corollary 2 Let the function f(z) defined by (1.9) be in the class

P ∗(p,A,B, α, j), then the unit disc U is mapped onto a domain that con-

tains the disc

(3.6) |w| < (1 +B)δ(p+ 1, j)− (B − A)(δ(p, j)− α)

(1 +B)δ(p+ 1, j)
.

The result is sharp, with the external function f(z) given by (3.3).

Theorem 3 If a function f(z) defined by (1.9) is in the class

P ∗(p,A,B, α, j), then{
p!

(p−m)!
− (B − A)(δ(p, j)− α)(p+ 1− j)!

(1 +B)(p+ 1−m)!
|z|
}
|z|p−m ≤

∣∣f (m)(z)
∣∣

(3.7) ≤
{

p!

(p−m)!
+

(B − A)(δ(p, j)− α)(p+ 1− j)!

(1 +B)(p+ 1−m)!
|z|
}
|z|p−m

(z ∈ U ; 0 ≤ α < δ(p, j); 0 ≤ j ≤ p ; m ∈ N0 = N ∪ {0};

p > m; −1 ≤ A < B ≤ 1 ; 0 < B ≤ 1).

The result is sharp for the function f(z) given by (3.3).
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Proof. In view of Theorem 1, we have

(1 +B)δ(p+ 1, j)

(B − A)(δ(p, j)− α)(p+ 1)!

∞∑
n=1

(p+ n)! ap+n

≤
∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
ap+n ≤ 1,

which readily yields

(3.8)
∞∑
n=1

(p+ n)!ap+n ≤ (B − A)(δ(p, j)− α)(p+ 1− j)!

(1 +B)
.

Now, by differentiating both sides of (1.9) m times, we have

f (m)(z) =
p!

(p−m)!
zp−m −

∞∑
n=1

(p+ n)!

(p+ n−m)!
ap+n z

p+n−m

(3.9) (p, n ∈ N ; m ∈ N0 ; p > m)

and Theorem 3 would follows from (3.8) and (3.9). Finally, it is easy

to see that the bounds in (3.7) are attained for the function f(z) given

by (3.3).

4 Radii of Close-to-Convexity, Starlikeness

and Convexity

Theorem 4 Let the function f(z) defined by (1.9) be in the class

P ∗(p,A,B, α, j), then f(z) is p-valent close-to-convex of order ϕ (0 ≤
ϕ < p) in |z| < r1, where

(4.1) r1 = inf
n

{
(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
(
p− ϕ

p+ n
)

} 1

n (n ≥ 1).

The result is sharp, with the external function f(z) given by (2.5).
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Proof. We must show that

∣∣∣∣f ′
(z)

zp−1
− p

∣∣∣∣ ≤ p− ϕ for |z| < r1. We have

∣∣∣∣f ′
(z)

zp−1
− p

∣∣∣∣ ≤ ∞∑
n=1

(p+ n)ap+n |z|n .

Thus

∣∣∣∣f ′
(z)

zp−1
− p

∣∣∣∣ ≤ p− ϕ if

(4.2)
∞∑
n=1

(
p+ n

p− ϕ
)ap+n |z|n ≤ 1.

Hence, by Theorem 1, (4.2) will be true if

(
p+ n

p− ϕ
) |z|n ≤ (1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)

or if

(4.3) |z| ≤
{

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
(
p− ϕ

p+ n
)

} 1

n (n ≥ 1).

The theorem follows easily from (4.3).

Theorem 5 Let the function f(z) defined by (1.9) be in the class

P ∗(p,A,B, α, j), then f(z) is p-valent starlike of order ϕ (0 ≤ ϕ < p) in

|z| < r2, where

(4.4) r2 = inf
n

{
(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
(

p− ϕ

p+ n− ϕ
)

}1

n (n ≥ 1).

The result is sharp, with the external function f(z) given by (2.5).

Proof. It is sufficient to show that

∣∣∣∣zf ′
(z)

f(z)
− p

∣∣∣∣ ≤ p − ϕ for |z| < r2.

Using similar arguments as given by Theorem 4, we can get the result.
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Corollary 3 Let the function f(z) defined by (1.9) be in the class

P ∗(p,A,B, α, j), then f(z) is p-valent convex of order ϕ (0 ≤ ϕ < p)

in |z| < r3, where

(4.5) r3 = inf
n

{
(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
(

p(p− ϕ)

(p+ n)(p+ n− ϕ)
)

} 1

n (n ≥ 1).

The result is sharp, with the external function f(z) given by (2.5).

5 Extreme Points

From Theorem 1, we see that the class P ∗(p,A,B, α, j), is closed under

convex linear combinations, which enables us to determine the extreme

points for this class.

Theorem 6 Let

(5.1) fp(z) = zp

and

(5.2) fp+n(z) = zp − (B − A)(δ(p, j)− α )

(1 +B)δ(p+ n, j)
zp+n(p, n ∈ N).

Then f(z) ∈ P ∗(p,A,B, α, j) if and only if it can be expressed in the

form

(5.3) f(z) =
∞∑
n=0

λp+n fp+n(z),

where λp+n ≥ 0 and
∞∑
n=0

λp+n = 1.

Proof. Suppose that

f(z) =
∞∑
n=0

λp+n fp+n(z)
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(5.4) = zp −
∞∑
n=1

(B − A)(δ(p, j)− α )

(1 +B)δ(p+ n, j)
λp+n z

p+n.

Then it follows that

∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
.
(B − A)(δ(p, j)− α )

(1 +B)δ(p+ n, j)
λp+n

(5.5) =
∞∑
n=1

λp+n = 1− λp ≤ 1.

Therefore, by Theorem 1, f(z) ∈ P ∗(p,A,B, α, j). Conversely, assume

that the function f(z) defined by (1.9) belongs to the class P ∗(p,A,B, α, j).

Then

(5.6) ap+n ≤ (B − A)(δ(p, j)− α )

(1 +B)δ(p+ n, j)
(p, n ∈ N).

Setting

(5.7) λp+n =
(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
(p, n ∈ N)

and

(5.8) λp = 1−
∞∑
n=1

λp+n,

we see that f(z) an be expressed in the form (5.3). This completes the

proof of Theorem 6.

Corollary 4 The extreme points of the class P ∗(p,A,B, α, j) are the

functions fp(z) = zp and

fp+n(z) = zp − (B − A)(δ(p, j)− α )

(1 +B)δ(p+ n, j)
zp+n(p, n ∈ N).
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6 Integral Operators

Theorem 7 Let the function f(z) defined by (1.9) be in the class

P ∗(p,A,B, α, j), and let c be a real mumber such that c > −p.Then the

function F (z) defined by

(6.1) F (z) =
c+ p

zc

z∫
0

tc−1 f(t) dt

also belongs to the class P ∗(p,A,B, α, j).

Proof. From the representation of F (z), it follows that

(6.2) F (z) = zp −
∞∑
n=1

bp+n z
p+n,

where

bp+n = (
c+ p

c+ p+ n
)ap+n.

Therefore, we have

∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
bp+n

=
∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
(

c+ p

c+ p+ n
)ap+n

≤
∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
ap+n ≤ 1

since f(z)∈P ∗(p,A,B,α, j).Hence, by Theorem 1, F (z)∈P ∗(p,A,B, α, j).

Theorem 8 Let c be a real number such that c > −p. If F (z) ∈
P ∗(p,A,B, α, j), then the function f(z) defined in (6.1) is p-valent in

|z| < R∗
p , where

(6.3) R∗
p = inf

n

{
(

c+ p

c+ p+ n
)

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
(

p

p+ n
)

} 1

n (n ∈ N).
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The result is sharp.

Proof. Suppose that

F (z) = zp −
∞∑
n=1

ap+n z
p+n(ap+n ≥ 0).

It follows then from (6.1) that

f(z) =
z1−c[zcF (z)]

′

c+ p
(c > −p)

= zp −
∞∑
n=1

(
c+ p+ n

c+ p
)ap+nz

p+n.

To prove Theorem 8, it suffices to show that

∣∣∣∣f ′
(z)

zp−1
− p

∣∣∣∣ ≤ p for |z| <

R∗
p. Now ∣∣∣∣f ′

(z)

zp−1
− p

∣∣∣∣ =

∣∣∣∣∣−
∞∑
n=1

(
c+ p+ n

c+ p
)(p+ n)ap+nz

n

∣∣∣∣∣
≤

∞∑
n=1

(
c+ p+ n

c+ p
)(p+ n)ap+n |z|n .

Thus

∣∣∣∣f ′
(z)

zp−1
− p

∣∣∣∣ ≤ p if

(6.4)
∞∑
n=1

(
c+ p+ n

c+ p
)(
p+ n

p
)ap+n |z|n ≤ 1.

But Theorem 1 confirms that

(6.5)
∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
ap+n ≤ 1.

Thus (6.4) will be satisfied if

(
p+ n

p
)(
c+ p+ n

c+ p
)ap+n |z|n ≤ (1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
(n ∈ N),
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or if

(6.6) |z| ≤
{
(

c+ p

c+ p+ n
)

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
(

p

p+ n
)

} 1

n (n ∈ N).

The required result follows now from (6.6).The result is sharp for the

function

(6.7) f(z) = zp − (c+ p+ n)(B − A)(δ(p, j)− α)

(c+ p)(1 +B)δ(p+ n, j)
zp+n(p, n ∈ N).

7 Modified Hadamard Products

Let the functions f(z)(ν = 1, 2) be defined by

(7.1) fν(z) = zp −
∞∑
n=1

ap+n,ν z
p+n(ap+n,ν ≥ 0; ν = 1, 2).

Then the modified Hadamard product (or convolituon) of f1(z) and f2(z)

is defined by

(7.2) (f1 ∗ f2)(z) = zp −
∞∑
n=1

ap+n,1ap+n,2z
p+n.

Theorem 9 Let the functions fν(z)(ν = 1, 2) defined by (7.1) be in the

class P ∗(p,A,B, α, j). Then (f1 ∗ f2)(z) ∈ P ∗(p,A,B, γ, j), where

(7.3) γ = δ(p, j)− (B − A)(δ(p, j)− α)2

(1 +B)δ(p+ 1, j)
.

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman

[14], we need to find the largest γ such that

(7.4)
∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− γ)
ap+n,1ap+n,2 ≤ 1.
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Since

(7.5)
∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
ap+n,1 ≤ 1

and

(7.6)
∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
ap+n,2 ≤ 1.

Therefore, by the Cauchy- Schwarz inequality, we have

(7.7)
∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)

√
ap+n,1ap+n,2 ≤ 1.

Thus it is sufficient to show that

(7.8)
1

(δ(p, j)− γ)
ap+n,1ap+n,2 ≤

1

(δ(p, j)− α)

√
ap+n,1ap+n,2(n ≥ 1),

that is, that

(7.9)
√
ap+n,1ap+n,2 ≤

(δ(p, j)− γ)

(δ(p, j)− α)
(n ≥ 1).

Note that

(7.10)
√
ap+n,1ap+n,2 ≤

(B − A)(δ(p, j)− α)

(1 +B)δ(p+ n, j)
(n ≥ 1).

Consequently, we need only to prove that

(7.11)
(B − A)(δ(p, j)− α)

(1 +B)δ(p+ n, j)
≤ (δ(p, j)− γ)

(δ(p, j)− α)
(n ≥ 1)

or, equivalently, that

(7.12) γ ≤ δ(p, j)− (B − A)(δ(p, j)− α)2

(1 +B)δ(p+ n, j)
(n ≥ 1).

Since D(n) defined by

(7.13) D(n) = δ(p, j)− (B − A)(δ(p, j)− α)2

(1 +B)δ(p+ n, j)
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is an increasing function of n (n ≥ 1), letting n = 1 in (7.13), we obtain

(7.14) γ ≤ δ(p, j)− (B − A)(δ(p, j)− α)2

(1 +B)δ(p+ 1, j)
,

which completes the proof of Theorem 9. Finally, by taking the func-

tions

(7.15) fν(z) = zp − (B − A)(δ(p, j)− α)

(1 +B)δ(p+ 1, j)
zp+1(ν = 1, 2 ; p ∈ N)

we can see that the result is sharp.

Corollary 5 For the functions fν(z)(ν = 1, 2) as in Theorem 9, we have

(7.16) h(z) = zp −
∞∑
n=1

√
ap+n,1ap+n,2 z

p+n

belongs to the class P ∗(p,A,B, α, j). The result follows from the inequal-

ity (7.7). It is sharp for the same functions as in Theorem 9.

Using arguments similar to those in the proof of Theorem 9, we obtain

the following result.

Theorem 10 Let the function f1(z) defined by (7.1) be in the class

P ∗(p,A,B, α, j) and the function f2(z) defined by (7.1) be the

class P ∗(p,A,B, τ , j), then (f1 ∗ f2)(z) ∈ P ∗(p,A,B, ζ, j), where

(7.17) ζ = δ(p, j)− (B − A)(δ(p, j)− α)(δ(p, j)− τ)

(1 +B)δ(p+ 1, j)
.

The result is the best possible for the functions fν(z)(ν = 1, 2) given by

(7.18) f1(z) = zp − (B − A)(δ(p, j)− α)

(1 +B)δ(p+ 1, j)
zp+1(p ∈ N)

and

(7.19) f2(z) = zp − (B − A)(δ(p, j)− τ)

(1 +B)δ(p+ 1, j)
zp+1(p ∈ N).
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Corollary 6 Let each of the functions fν(z)(ν = 1, 2, 3) defined by (7.1)

be in the class P ∗(p,A,B, α, j). Then (f1 ∗ f2 ∗ f3)(z) ∈ P ∗(p,A,B, ξ, j),

where

(7.20) ξ = δ(p, j)− (B − A)2(δ(p, j)− α)3

[(1 +B)δ(p+ 1, j)]2
.

The result is the best possible for the functions fν(z)(ν = 1, 2, 3) given

by

(7.21) fν(z) = zp − (B − A)(δ(p, j)− α)

(1 +B)δ(p+ 1, j)
zp+1 (p ∈ N).

Proof. Under the hypothesis of Corollary 6, we find from Theorem

9 that (f1 ∗ f2)(z) ∈ P ∗(p,A,B, γ, j), where γ is given by (7.3).Now by

making use of Theorem 10 , we get (f1 ∗ f2 ∗ f3)(z) ∈ P ∗(p,A,B, ξ, j),

where

ξ = δ(p, j)− (B − A)(δ(p, j)− α)(δ(p, j)− γ)

(1 +B)δ(p+ 1, j)
,

= δ(p, j)− (B − A)(δ(p, j)− α)3

[(1 +B)δ(p+ 1, j)]2
,

which completes the proof of Corollary 6 .

Theorem 11 Let the functions fν(z)(ν = 1, 2) defined by (7.1) be in the

class P ∗(p,A,B, α, j). Then the function

(7.22) h(z) = zp −
∞∑
n=1

(a2p+n,1 + a2p+n,2) z
p+n

belongs to the class P ∗(p,A,B, ϕ, j), where

(7.23) ϕ = δ(p, j)− 2(B − A)(δ(p, j)− α)2

(1 +B)δ(p+ 1, j)
.

The result is sharp for the functions fν(z)(ν = 1, 2) defined by (7.15).
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Proof. By virtue of Theorem 1, we obtain

∞∑
n=1

[
(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)

]2
a2p+n,ν

≤

[
∞∑
n=1

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)
ap+n,ν

]2
≤ 1(ν = 1, 2) (7.24)

(fν(z) ∈ P ∗(p,A,B, α, j) (ν = 1, 2)) ,

we have

(7.25)
∞∑
n=1

1

2

[
(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)

]2
(a2p+n,1 + a2p+n,2) ≤ 1.

Therefore, we need to find the largest ϕ such that

(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− ϕ)
≤

(7.26)
1

2

[
(1 +B)δ(p+ n, j)

(B − A)(δ(p, j)− α)

]2
(n ≥ 1)

that is,

(7.27) φ ≤ δ(p, j)− 2(B − A)(δ(p, j)− α)2

(1 +B)δ(p+ n, j)
(n ≥ 1).

Since

Ψ(n) = δ(p, j)− 2(B − A)(δ(p, j)− α)2

(1 +B)δ(p+ n, j)

is an increasing function of n (n ≥ 1), we readily have

ϕ ≤ Ψ(1) = δ(p, j)− 2(B − A)(δ(p, j)− α)2

(1 +B)δ(p+ 1, j)
,

and Theorem 11 follows at once.
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Bernoulli polynomials 1
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Abstract

In this paper we introduce the generalization of Multi Poly-

Euler polynomials and we investigate some relationship involving

Multi Poly-Euler polynomials. Obtaining a closed formula for

generalization of Multi Poly-Euler numbers therefore seems to be

a natural and important problem.
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1 Introduction

In the 17th century a topic of mathematical interst was finite sums of

powers of integers such as the series 1 + 2 + ... + (n − 1) or the series
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12+22+...+(n−1)2.The closed form for these finite sums were known ,but

the sum of the more general series 1k+2k+ ...+(n−1)kwas not.It was the

mathematician Jacob Bernoulli who would solve this problem.Bernoulli

numbers arise in Taylor series in the expansion

(1) x
ex−1

=
∞∑
n=0

Bn
xn

n! .

and we have,

(2)

Sm(n) =
∑n

k=1 k
m = 1m + 2m + · · ·+ nm = 1

m+1

∑m
k=0

(
m+1
k

)
Bk n

m+1−k .

and we have following matrix representation for Bernoulli numbers(for

n ∈ N),[1-4].

Bn =
(−1)n

(n− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

1
3

1
4

· · · 1
n

1
n+1

1 1 1 · · · 1 1

0 2 3 · · ·n− 1 n

0 0
(
3
2

)
· · ·
(
n−1
2

) (
n
2

)
...

...
...

. . .
...

...

0 0 0 · · ·
(
n−1
n−2

) (
n

n−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.(3)

Euler on page 499 of [5], introduced Euler polynomials, to evaluate the

alternating sum

(4) An(m) =
m∑
k=1

(−1)m−kkn = mn − (m− 1)n + ...+ (−1)m−11n .

The Euler numbers may be defined by the following generating functions

(5) 2
et+1

=
∞∑
n=0

En
tn

n! .

and we have following folowing matrix representation for Euler numbers,

[1,2,3,4].
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E2n = (−1)n(2n)!

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2!

1
1
4!

1
2!

1
...

. . . . . .
1

(2n−2)!
1

(2n−4)!
1
2!

1
1

(2n)!
1

(2n−2)!
· · · 1

4!
1
2!

∣∣∣∣∣∣∣∣∣∣∣∣∣
.(6)

The poly-Bernoulli polynomials have been studied by many researchers

in recent decade. The history of these polynomials goes back to Kaneko.

The poly-Bernoulli polynomials have wide-ranging application from num-

ber theory and combinatorics and other fields of applied mathematics.

One of applications of poly-Bernoulli numbers that was investigated by

Chad Brewbaker in [6,7,8,9], is about the number of (0, 1)-matrices with

n-rows and k columns. He showed the number of (0, 1)-matrices with

n-rows and k columns uniquely reconstructable from their row and col-

umn sums are the poly-Bernoulli numbers of negative index B
(−k)
n . Let

us briefly recall poly-Bernoulli numbers and polynomials. For an integer

k ∈ Z, put

(7) Lik(z) =
∑∞

n=1
zn

nk . .

which is the k-th polylogarithm if k ≥ 1 , and a rational function if k ≤ 0.

The name of the function come from the fact that it may alternatively be

defined as the repeated integral of itself . The formal power series can be

used to define Poly-Bernoulli numbers and polynomials. The polynomials

B
(k)
n (x) are said to be poly-Bernoulli polynomials if they satisfy,

(8)
Lik(1−e−t)

1−e−t ext =
∞∑
n=0

B
(k)
n (x) t

n

n! .

In fact, Poly-Bernoulli polynomials are generalization of Bernoulli poly-

nomials, because for n ≤ 0, we have,
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(9) (−1)nB
(1)
n (−x) = Bn(x) .

Sasaki,[10], Japanese mathematician, found the Euler type version of

these polynomials, In fact, he by using the following relation for Euler

numbers,

(10) cosht =
∞∑
n=0

En

n!
tn .

found a poly-Euler version as follows

(11)
Lik(1−e−4t)

4tcosht
=

∞∑
n=0

E
(k)
n

tn

n! .

Moreover, he by defining the following L-function, interpolated his defi-

nition about Poly-Euler numbers.

(12) Lk(s) =
1

Γ(s)

∫∞
0
ts−1Lik(1−e−4t)

4(et+e−t)
dt .

and Sasaki showed that

(13) Lk(−n) = (−1)nn
E

(k)
n−1

2
.

But the fact is that working on such type of generating function for find-

ing some identities is not so easy. So by inspiration of the definitions of

Euler numbers and Bernoulli numbers, we can define Poly-Euler num-

bers and polynomials as follows which also A.Bayad [11], defined it by

following method in same times.

Definition 1 (Poly-Euler polynomials):The Poly-Euler polynomials may

be defined by using the following generating function,

(14)
2Lik(1−e−t)

1+et
ext =

∞∑
n=0

E
(k)
n

tn

n! .
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If we replace t by 4t and take x = 1/2 and using the definition cosht =
et+e−t

2
, we get the Poly-Euler numbers which was introduced by Sasaki

and Bayad and also we can find same interpolating function for them

(with some additional constant coefficient).

The generalization of poly-logarithm is defined by the following infi-

nite series

(15) Li(k1,k2,...,kr)(z) =
∑

m1,m2,...,mr

zmr

m
k1
1 ...mkr

r
.

which here in summation (0 < m1 < m2 < ...mr).

Kim-Kim [12], one of student of Taekyun Kim introduced the Multi

poly- Bernoulli numbers and proved that special values of certain zeta

functions at non-positive integers can be described in terms of these num-

bers. The study of Multi poly-Bernoulli numbers and their combinatorial

relations has received much attention in [6-13]. The Multi Poly-Bernoulli

numbers may be defined as follows

(16)
Li(k1,k2,...,kr)(1−e−t)

(1−e−t)r
=

∞∑
n=0

B
(k1,k2,...,kr)
n

tn

n! .

So by inspiration of this definition we can define the Multi Poly-Euler

numbers and polynomials .

Definition 2 Multi Poly-Euler polynomials E
(k1,...,kr)
n (x), (n = 0, 1, 2, ...)

are defined for each integer k1, k2, ..., kr by the generating series

(17)
2Li(k1,...,kr)(1−e−t)

(1+et)r
erxt =

∞∑
n=0

E
(k1,...,kr)
n (x) t

n

n! .

and if x = 0, then we can define Multi Poly-Euler numbers E
(k1,...,kr)
n =

E
(k1,...,kr)
n (0)

Now we define three parameters a, b, c, for Multi Poly-Euler polyno-

mials and Multi Poly-Euler numbers as follows.
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Definition 3 Multi Poly-Euler polynomials E
(k1,...,kr)
n (x, a, b), (n=0,1,2,...)

are defined for each integer k1, k2, ..., kr by the generating series

(18)
2Li(k1,...,kr)(1−(ab)−t)

(a−t+bt)r
erxt =

∞∑
n=0

E
(k1,...,kr)
n (x, a, b) t

n

n! .

In the same way, and if x = 0, then we can define Multi Poly-Euler

numbers with a, b parameters E
(k1,...,kr)
n (a, b) = E

(k1,...,kr)
n (0, a, b).

In the following theorem, we find a relation between E
(k1,...,kr)
n (a, b)

and E
(k1,...,kr)
n (x)

Theorem 1 Let a, b > 0, ab ̸= ±1 then we have

(19) E
(k1,k2,...,kr)
n (a, b) = E

(k1,k2,...,kr)
n

(
lna

lna+lnb

)
(lna+ lnb)n .

Proof. By applying the Definition 2 and Definition 3,we have

2Li(k1,...,kr)(1− (ab)−t)

(a−t + bt)r
=

∞∑
n=0

E(k1,...,kr)
n (a, b)

tn

n!

= ert ln a2Li(k1,...,kr)(1− e−t ln ab)

(1 + et ln ab)r

So, we get

2Li(k1,...,kr)(1− (ab)−t)

(a−t + bt)r
=

∞∑
n=0

E(k1,...,kr)
n

(
ln a

ln a+ ln b

)
(ln a+ ln b)n

tn

n!

Therefore, by comparing the coefficients of tn on both sides, we get the

desired result.

Now, In next theorem, we show a shortest relationship between

E
(k1,k2,...,kr)
n (a, b) and E

(k1,k2,...,kr)
n .
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Theorem 2 Let a, b > 0, ab ̸= ±1 then we have

(20) E
(k1,k2,...,kr)
n (a, b) =

n∑
i=0

rn−i(ln a+ ln b)i(ln a)n−i
(
n
i

)
E

(k1,k2,...,kr)
i .

Proof. By applying the Definition 2, we have,

∞∑
n=0

E(k1,...,kr)
n (a, b)

tn

n!
=

2Li(k1,...,kr)(1− (ab)−t)

(a−t + bt)r

= ert ln a2Li(k1,...,kr)(1− e−t ln ab)

(1 + et ln ab)r

=

(
∞∑
k=0

rktk(ln a)k

k!

)(
∞∑
n=0

E(k1,...,kr)
n (ln a+ ln b)n

tn

n!

)

=
∞∑
j=0

(
j∑

i=0

rj−i
E

(k1,...,kr)
j (ln a+ ln b)i(ln a)j−i

i!(j − i)!
tj

)

So, by comparing the coefficients of tn on both sides , we get the desired

result.

By applying the definition 2, by simple manipulation, we get the

following corollary

Corollary 1 For non-zero numbers a, b, with ab ̸= −1 we have

(21) E
(k1,...,kr)
n (x; a, b) =

n∑
i=0

(
n
i

)
rn−iE

(k1,...,kr)
i (a, b)xn−i .

Furthermore, by combinig the results of Theorem 2, and Corollary 1,

we get the following relation between generalization of Multi Poly-Euler

polynomials with a, b parameters E
(k1,...,kr)
n (x; a, b), and Multi Poly-Euler

numbers E
(k1,...,kr)
n .
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(22)

E
(k1,...,kr)
n (x; a, b) =

n∑
k=0

k∑
j=0

rn−k
(
n
k

)(
k
j

)
(ln a)k−j(ln a+ ln b)jE

(k1,...,kr)
j xn−k .

Now, we state the ”Addition formula” for generalized Multi Poly-

Euler polynomials

Corollary 2 (Addition formula) For non-zero numbers a, b, with

ab ̸= −1 we have

(23) E
(k1,...,kr)
n (x+ y; a, b) =

n∑
k=0

(
n
k

)
rn−kE

(k1,...,kr)
k (x; a, b)yn−k .

Proof. We can write

∞∑
n=0

E(k1,...,kr)
n (x+ y; a, b)

tn

n!
=

2Li(k1,...,kr)(1− (ab)−t)

(a−t + bt)r
e(x+y)rt

=
2Li(k1,...,kr)(1− (ab)−t)

(a−t + bt)r
exrteyrt

=

(
∞∑
n=0

E(k1,...,kr)
n (x; a, b)

tn

n!

)(
n∑

i=0

yiri

i!
ti

)

=
∞∑
n=0

(
n∑

k=0

(
n

k

)
rn−kyn−kE

(k1,...,kr)
k (x; a, b)

)
tn

n!

So, by comparing the coefficients of tn on both sides , we get the desired

result.

2 Explicit formula for Multi Poly-Euler

polynomials

Here we present an explicit formula for Multi Poly-Euler polynomials.
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Theorem 3 The Multi Poly-Euler polynomials have the following ex-

plicit formula

(24)

E
(k1,k2,...,kr)
n (x)=

n∑
i=0

∑
0≤m1≤m2≤...≤mr

c1+c2+...=r

mr∑
j=0

2(rx−j)n−ir!(−1)j+c1+2c2+...(c1+2c2+v...)i(mr
j )(

n
i)

(c1!c2!...)(m
k1
1 m

k2
2 ...mkr

r )
.

Proof. We have

Li(k1,k2,...,kr)(1−e−t)erxt =
∑

0≤m1≤m2≤...≤mr

(1− e−t)mr

mk1
1 m

k2
2 . . .mkr

r

erxt

=
∑

0≤m1≤m2≤...≤mr

1

mk1
1 m

k2
2 . . .mkr

r

mr∑
j=0

(−1)j
(
mr

j

)∑
n≥0

(rx− j)n
tn

n!

=
∑
n≥0

( ∑
0≤m1≤m2≤...≤mr

mr∑
j=0

(−1)j(rx− j)n
(
mr

j

)
mk1

1 m
k2
2 . . .mkr

r

)
tn

n!
.

On the other hand,

(
1

1 + et

)r

=

(∑
n≥0

(−1)nent

)r

=
∑

c1+c2+...=r

r!(−1)c1+2c2+...

c1!c2! . . .
et(c1+2c2+...)

=
∑

c1+c2+...=r

r!(−1)c1+2c2+...

c1!c2! . . .

∑
n≥0

(c1 + 2c2 + . . .)n
tn

n!

=
∑
n≥0

( ∑
c1+c2+...=r

r!(−1)c1+2c2+...(c1 + 2c2 + . . .)n

c1!c2! . . .

)
tn

n!
.

Hence,

2Li(k1,k2,...,kr)(1− e−t)

(1 + et)r
erxt = 2Li(k1,k2,...,kr)(1−e−t)erxt

(
1

1 + et

)r
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=

(∑
n≥0

( ∑
0≤m1≤m2≤...≤mr

mr∑
j=0

(−1)j(rx− j)n
(
mr

j

)
mk1

1 m
k2
2 . . .mkr

r

)
tn

n!

)
×

×

(∑
n≥0

( ∑
c1+c2+...=r

r!(−1)c1+2c2+...(c1 + 2c2 + . . .)n

c1!c2! . . .

)
tn

n!

)

= 2
∑
n≥0

n∑
i=0

( ∑
0≤m1≤m2≤...≤mr

mr∑
j=0

(−1)j(rx− j)n−i
(
mr

j

)
mk1

1 m
k2
2 . . .mkr

r

)
tn−i

(n− i)!
×

×

( ∑
c1+c2+...=r

r!(−1)c1+2c2+...(c1 + 2c2 + . . .)i

c1!c2! . . .

)
ti

i!

=2
∑
n≥0

n∑
i=0

∑
0≤m1≤m2≤...≤mr

c1+c2+...=r

mr∑
j=0

(rx−j)n−ir!(−1)j+c1+2c2+...(c1+2c2+. . .)
i
(
mr

j

)(
n
i

)
(c1!c2! . . .)(m

k1
1 m

k2
2 . . .mkr

r )

tn

n!

By comparing the coefficient of tn/n!, we obtain the desired explicit

formula.

Definition 4 (Poly-Euler polynomials with a, b, c parameters):The Poly-

Euler polynomials with a, b, c parameters may be defined by using the

following generating function,

(25)
2Lik(1−(ab)−t)

a−t+bt
cxt =

∞∑
n=0

E
(k)
n (x; a, b, c) t

n

n! .

Now, in next theorem, we give an explicit formula for Poly-Euler

polynomials with a, b, c parameters.

Theorem 4 The generalized Poly-Euler polynomials with a, b, c param-

eters have the following explicit formula

(26)

E
(k)
n (x; a, b, c) =

n∑
m=0

m∑
j=0

j∑
i=0

2(−1)m−j+i

jk

(
j
i

)
(x ln c−(m−j+i+1) ln a−(m−j+i+1) ln b)n.
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Proof. We can write∑
n≥0

E(k)
n (x; a, b, c)

tn

n!
=

2Lik(1− (ab)−t)

a−t((ab)−t + 1)
cxt

= 2a−t

(∑
n≥0

(−1)n(ab)−nt

)(∑
n≥0

(1− (ab)−t)
m

mk

)
cxt

=a−t
∑
m≥0

m∑
j=0

j∑
i=0

2(−1)m−j+i

jk

(
j

i

)
(ab)−t(x+m−j+i)cxt

=
∑
m≥0

m∑
j=0

j∑
i=0

2(−1)m−j+i

jk

(
j

i

)
e−t(x+m−j+i) ln(ab)e−t ln aext ln c =

∑
n≥0

∑
m≥0

m∑
j=0

j∑
i=0

2(−1)m−j+i

jk

(
j

i

)∑
n≥0

(x ln c−(m−j+i+1) ln a−(m−j+i) ln b)n t
n

n!

=
∑
n≥0

n∑
m=0

m∑
j=0

j∑
i=0

2(−1)m−j+i

jk

(
j

i

)
(x ln c−(m−j+i+1) ln a−(m−j+i) ln b)n t

n

n!
.

By comparing the coefficient of tn/n!, we obtain the desired explicit

formula.
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Sandwich results for certain subclasses of
analytic functions defined by convolution 1

A. O. Mostafa, M. K. Aouf

Abstract

In this paper, we obtain some applications of first order

differential subordination and superordination results for analytic

functions in the open unit disc. The results, which are presented

in this paper, have relevant connections with various previous

results.

2010 Mathematics Subject Classification: 30C45.

Key words and phrases: Analytic functions, differential

subordination , superordination, sandwich theorems, convolution.

1 Introduction

Let H be the class of analytic functions in the unit disc U = {z ∈ C :

|z| < 1} and let H[a, k] be the subclass of H consisting of functions of

the form:

(1.1) f(z) = a+ akz
k + ak+1z

k+1... (a ∈ C).

1Received 28 July, 2009
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Also, let A1 be the subclass of H consisting of functions of the form:

(1.2) f(z) = z +
∞∑
k=2

akz
k.

If f , g ∈ H, we say that f is subordinate to g, written f(z) ≺ g(z)

if there exists a Schwarz function w, which (by definition) is analytic

in U with w(0) = 0 and |w(z)| < 1 for all z ∈ U, such that f(z) =

g(w(z)), z ∈ U. Furthermore, if the function g is univalent in U, then we

have the following equivalence, (cf., e.g.,[5] and [16]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let p, h ∈ H and let φ(r, s, t; z) : C3×U → C. If p and φ(p(z), zp′(z),

z2p′′(z); z) are univalent and if p satisfies the second order superordina-

tion

(1.3) h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z),

then p is a solution of the differential superordination (1.3). Note that if f

is subordinate to g, then g is superordinate to f. An analytic function q is

called a subordinant if q(z) ≺ p(z) for all p satisfying (1.3). A univalent

subordinant q̃ that satisfies q ≺ q̃ for all subordinants of (1.3) is called the

best subordinant. Recently Miller and Mocanu [17] obtained conditions

on the functions h, q and φ for which the following implication holds:

(1.4) h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z) ⇒ q(z) ≺ p(z).

Using the results of Miller and Mocanu [17], Bulboaca [4] considered

certain classes of first order differential superordinations as well as

superordination-preserving integral operators [6]. Ali et al. [1], have used

the results of Bulboaca [4] to obtain sufficient conditions for

normalized analytic functions to satisfy:

q1(z) ≺
zf ′(z)

f(z)
≺ q2(z),
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where q1 and q2 are given univalent functions in U with q1(0) = q2(0) = 1.

Also, Tuneski [25] obtained a sufficient condition for starlikeness of f

in terms of the quantity
f ′′(z)f(z)

(f ′(z))2
. Recently, Shanmugam et al. [23]

obtained sufficient conditions for the normalized analytic functions f to

satisfy

q1(z) ≺
f(z)

zf ′(z)
≺ q2(z)

and

q1(z) ≺
z2f ′(z)

{f(z)}2
≺ q2(z).

For functions f given by (1.2) and g ∈ A1 given by g(z) = z +
∞∑
k=2

bkz
k,

the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = z +
∞∑
k=2

akbkz
k = (g ∗ f)(z).

For functions f, g ∈ A1, we define the linear operator Dm
λ : A1 → A1

(λ > 0,m ∈ N0 = N ∪ {0}, N = {1, 2, ...}) by:

D0
λ(f ∗ g)(z) = (f ∗ g)(z) ,

D1
λ(f ∗ g)(z) = Dλ(f ∗ g)(z) = (1− λ )( f ∗ g)(z) + z λ( ( f ∗ g)(z))′ ,

and ( in general )

Dm
λ (f ∗ g)(z) = Dλ(D

m−1
λ (f ∗ g)(z))

(1.5) = z +
∞∑
k=2

[1 + λ(k − 1)]makbkz
k , λ > 0 .

From (1.5), we can easily deduce that

(1.6) λz (Dm
λ (f ∗ g)(z))′ = Dm+1

λ (f ∗g)(z)−(1−λ)Dm
λ (f ∗g)(z) (λ > 0).
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We observe that the function (f ∗ g)(z) reduces to several interesting

functions for different choices of the function g.

(i) For λ = 1 and bk = 1 (or g(z) =
z

1− z
), we have Dm

1 (f ∗ g)(z) =
Dmf(z), where Dm is the Sălăgean operator introduced and studied by

Sălăgean [21];

(ii) For bk = 1 (or g(z) =
z

1− z
), we have Dm

λ (f ∗ g)(z) = Dm
λ f(z),

where Dm
λ is the generalized Sălăgean operator introduced and studied

by Al-Oboudi [2];

(iii) For m = 0 and

(1.7) g(z) = z +
∞∑
k=2

(a)k−1

(c)k−1

zk (c ̸= 0,−1,−2, ...),

where

(d)k =

{
1 (k = 0; d ∈ C∗ = C\{0})
d(d+ 1)...(d+ k − 1) (k ∈ N ; d ∈ C),

we have D0
λ(f ∗ g)(z) = (f ∗ g)(z) = L(a, c)f(z), where the operator

L(a, c) was introduced by Carlson and Shaffer [7];

(iv) For m = 0 and

(1.8) g(z) = z +
∞∑
k=2

[
1 + l + λ(k − 1)

1 + l

]s
zk (λ > 0; l, s ∈ N0),

we see that D0
λ(f ∗ g)(z) = (f ∗ g)(z) = I(s, λ, l)f(z), where I(s, λ, l)

is the generalized multiplier transformation which was introduced and

studied by Cătaş et al. [8]. The operator I(s, λ, l), contains as special

cases, the multiplier transformation (see [9]), the generalized Sălăgean

operator introduced and studied by Al-Oboudi [2] which in turn contains

as special case the Sălăgean operator (see [21]);

(v) For m = 0 and

(1.9) g(z) = z +
∞∑
k=2

(α1)k−1...(αl)k−1

(β1)k−1...(βs)k−1(1)k−1

zk,
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where, αi, βj ∈ C∗, (i = 1, 2, ...l), (j = 1, 2, ...s), l ≤ s + 1, l, s ∈ N0,

we see that, D0
λ(f ∗ g)(z) = (f ∗ g)(z) = Hl,s(α1)f(z), where Hl,s(α1)

is the Dziok-Srivastava operator introduced and studied by Dziok and

Srivastava [10] ( see also [11] and [12]). The operator Hl,s(α1), contains in

turn many interesting operators such as, Hohlov linear operator (see [13]),

the Carlson-Shaffer linear operator (see [7] and [20] ), the Ruscheweyh

derivative operator (see [19]), the Bernardi-Libera-Livingston operator (

see [3], [14] and [15]) and Owa-Srivastava fractional derivative operator

(see [18]);

(vi) For g(z) of the form (1.9), the operatorDm
λ (f∗g)(z)=Dm

λ (α1, β1)f(z),

introduced and studied by Selvaraj and Karthikeyan [22].

In this paper, we obtain sufficient conditions for the normalized ana-

lytic function f defined by using the operator Dm
λ (f ∗ g)(z) to satisfy:

q1(z) ≺
(

z

Dm
λ (f ∗ g)(z)

)δ

≺ q2(z),

where q1 and q2 are given univalent functions in U.

2 Definitions and Preliminaries

In order to prove our results, we shall make use of the following known

results.

Definition 1 [17] . Denote by Q, the set of all functions f that are an-

alytic and injective on U \ E(f), where

E(f) = {ξ ∈ ∂U : lim
z→ξ

f(z) = ∞},

and are such that f ′(ξ) ̸= 0 for ξ ∈ ∂U \ E(f).

Lemma 1 [23] . Let q be convex univalent function in U and let δ ∈
C, γ ∈ C∗ with Re{1 + zq′′(z)

q′(z)
+ δ

γ
} > 0. If p is analytic in U and

δp(z) + γzp′(z) ≺ δq(z) + γzq′(z),
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then p(z) ≺ q(z) and q is the best dominant.

Lemma 2 [17] . Let q be convex univalent in U and γ ∈ C. Further

assume that Re {γ} > 0. If p(z) ∈ H[q(0), 1] ∩ Q, p(z) + γzp′(z) is

univalent in U , then

q(z) + γzq′(z) ≺ p(z) + γzp′(z),

implies p(z) ≺ q(z) and q is the best dominant.

3 Applications to Dm
λ (f ∗ g) Operator

Unless otherwise mentioned, we shall assume in the reminder of this

paper that λ > 0; ℓ ≥ 0; p ∈ N ;m ∈ N0,z ∈ U and The powers are the

principle ones .

Theorem 1 Let q be univalent in U with q(0) = 1, η ∈ C∗, 0 < δ <

1 and q satisfy

(3.1) Re{1 + zq′′(z)

q′(z)
+
δ

η
} > 0.

If f ∈ A1 satisfies the subordination:

(3.2) χ(f, g, λ,m, δ, η) ≺ q(z) +
η

δ
zq′(z),

where χ(f, g, λ,m, δ, η) is given by

χ(f, g, λ,m, δ, η) =

(3.3) (1 +
η

λ
)

(
z

Dm
λ (f ∗ g)(z)

)δ

− η

λ

(
z

Dm
λ (f ∗ g)(z)

)δ
Dm+1

λ (f ∗ g)(z)
Dm

λ (f ∗ g)(z)
,

then

(3.4) (
z

Dm
λ (f ∗ g)(z)

)δ ≺ q(z)

and q is the best dominant.
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Proof. Define a function p by

(3.5) p(z) = (
z

Dm
λ (f ∗ g)(z)

)δ (z ∈ U).

Then the function p is analytic in U and p(0) = 1. Therefore, differenti-

ating (3.5) logarithmically with respect to z and using the identity (1.6)

in the resulting equation, we have

(3.6)

p(z) +
η

δ
zp′(z) = (1 +

η

λ
)
(

z
Dm

λ (f∗g)(z)

)δ
− η

λ

(
z

Dm
λ (f∗g)(z)

)δ
Dm+1

λ (f∗g)(z)
Dm

λ (f∗g)(z) .

Using (3.2) and (3.6), we have

(3.7) p(z) +
η

δ
zp′(z) ≺ q(z) +

η

δ
zq′(z).

Hence, the assertion (3.4) now follows by using Lemma 1 with γ = η
δ

(η ∈ C, 0 < δ < 1) and ψ = 1.

Putting q(z) = (1 + Az)/(1 +Bz) (−1 ≤ B < A ≤ 1) in Theorem 1,

we have the following corollary.

Corollary 1 Let −1 ≤ B < A ≤ 1 and

Re

{
1− 2Bz

1 +Bz
+
δ

η

}
> 0.

If f(z) ∈ A1, η ∈ C∗, 0 < δ < 1 and

χ(f, g, λ,m, δ, η) ≺ 1 + Az

1 + Bz
+
η

δ

(A−B)z

(1 +Bz)2
,

where χ(f, g, λ,m, δ, η) is given by (3.3), then(
z

Dm
λ (f ∗ g)(z)

)δ

≺ 1 + Az

1 +Bz
,

and 1+Az
1+Bz

is the best dominant.
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And in particular, if A = 1, B = −1, q(z) = 1+z
1−z

and if

χ(f, g, λ,m, δ, η) ≺ 1 + z

1− z
+
η

δ

2z

(1− z)2
,

where χ(f, g, λ,m, δ, η) is given by (3.3), then(
z

Dm
λ (f ∗ g)(z)

)δ

≺ 1 + z

1− z

and 1+z
1−z

is the best dominant. Taking m = 0, g(z) of the form (1.8) in

Theorem 1 and using the identity (see [8])

(3.8)

λz(Ip(m,λ, l)f(z))
′=(1+l)I((m+1, λ, l)f(z)−[(1−λ)+l]I(m,λ, l)f(z) (λ>0),

we have the following result.

Corollary 2 Let q be univalent in U, η ∈ C∗, 0 < δ < 1 and q satisfy

(3.1). If f(z) ∈ A1 satisfies(
1+

(1+l)η

λ

)(
z

I(m,λ, l)f(z)

)δ

−(1+l)η
λ

(
z

I(m,λ, l)f(z)

)δ (
I(m+1,λ, l)f(z)

I(m,λ, l)f(z)

)

≺ q(z) +
η

δ
zq′(z),

then (
z

I(m,λ, l)f(z)

)δ

≺ q(z)

and q is the best dominant.

Taking m = 0, g(z) of the form (1.9) in Theorem 1 and using the identity

(see [10])

z(Hl,s(α1)f(z))
′ = α1Hl,s(α1 + 1)f(z)− (α1 − 1)Hl,s(α1)f(z),

we have the following corollary.
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Corollary 3 Let q be univalent in U, η ∈ C∗, 0 < δ < 1 and q satisfy

(3.1). If f(z) ∈ A1 satisfies

(1 + α1η)

(
z

Hl,s(α1)f(z)

)δ

− α1η

(
z

Hl,s(α1)f(z)

)δ (
Hl,s(α1 + 1)f(z)

Hl,s(α1)f(z)

)
≺ q(z) +

η

δ
zq′(z),

then (
z

Hl,s(α1)f(z)

)δ

≺ q(z)

and q is the best dominant. ( The power is the principle one.)

Remark 1 (i) Taking m = 0, g(z) of the form (1.7) and using the iden-

tity (see [7])

z(L(a, c)f(z))′ = aL(a+ 1, c)f(z)− (a− 1)L(a, c)f(z),

in Theorem 1, we have the result obtained by Shanmugam et al. [24 ,

Theorem 3.1];

(ii) Taking m = 0 and g(z) = z
1−z

in Theorem 1, we have the result

obtained by Shanmugam et al. [24 , Corollary 3.2].

Now, by appealing to Lemma 2 we can prove the following theorem.

Theorem 2 Let q be convex univalent in U with q(0) = 1, 0 < δ <

1, η ∈ C and:

(3.9) Re{η} > 0.

If f ∈ A1,

(
z

Dm
λ (f ∗ g)(z)

)δ

∈ H[q(0), 1] ∩ Q, χ(f, g, λ,m, δ, η) is

univalent in U, and

q(z) +
λ

δ
zq′(z) ≺ χ(f, g, λ,m, δ, η),
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where χ(f, g, λ,m, δ, η) is given by (3.3), then

q(z) ≺
(

z

Dm
λ (f ∗ g)(z)

)δ

and q is the best subordinant.

Proof. Define a function p by

p(z) =

(
z

Dm
λ (f ∗ g)(z)

)δ

(z ∈ U).

Then simple computations shows that

p(z) +
η

δ
zp′(z) = χ(f, g, λ,m, δ, η),

where χ(f, g, λ,m, δ, η) is given by (3.3). Theorem 2 follows as an appli-

cation of Lemma 2.

Remark 2 Taking m = 0 and g(z) in the form (1.7) in Theorem 2, we

have the result of Shanmugam et. al. [24, Theorem 4.1].

4 Sandwich Theorems

Combining Theorem 1 and Theorem 2, we get the following sandwich

theorem.

Theorem 3 Let q1 and q2 be convex univalent in U with q1(0) = q2(0) =

1, η ∈ C and 0 < δ < 1. Suppose that q2 satisfies (3.1). If f ∈

A1,

(
z

Dm
λ (f ∗ g)(z)

)δ

∈ H[q(0), 1]∩Q , χ(f, g, λ,m, δ, η) given by (3.3)

is univalent in U and if

q1(z) +
η

δ
zq′1(z) ≺ χ(f, g, λ,m, δ, η) ≺ q2(z) +

η

δ
zq′2(z),

then

q1(z) ≺
(

z

Dm
λ (f ∗ g)(z)

)δ

≺ q2(z)

and q1and q2 are, respectively, the best subordinant and the best dominant.
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Remark 3 Taking m = 0 and g(z) in the form (1.7) in Theorem 3, we

obtain the result obtained by Shanmugam et al. [24, Theorem 5.1].

Specializing the parameter m and g(z) in Theorems 1, 2 and 3, we obtain

the sandwich theorems for the corresponding operators.
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Abstract

The purpose of this paper is to establish the strong conver-

gence of a implicit iteration process with errors to a common

fixed point for a finite family of ψ−uniformly pseudocontractive

and ψ−uniformly accretive mappings in real Banach spaces. The

results presented in this paper extend and improve the correspond-

ing results of Refs. [3, 7, 12]. The remark at the end is important.
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1 Introduction

Form now onward, we assume that E is a real Banach space and K be

a nonempty convex subset of E. Let J denote the normalized duality

mapping from E to 2E
∗
defined by

J(x) = {f ∗ ∈ E∗ : ⟨x, f ∗⟩ = ||x||2 and ||f ∗|| = ||x||},

where E∗ denotes the dual space of E and ⟨·, ·⟩ denotes the generalized

duality pairing. We shall denote the single-valued duality map by j.

Let Ψ := {ψ | ψ : [0,∞) → [0,∞) is a strictly increasing mapping

such that ψ(0) = 0}.

Definition 1 A mapping T : K → K is called ψ−uniformly pseudo-

contractive if there exist mapping ψ ∈ Ψ and j(x − y) ∈ J(x − y) such

that

(1.1) ⟨Tx− Ty, j(x− y)⟩ ≤ ||x− y||2 − ψ(||x− y||), ∀x, y ∈ K.

Definition 2 A mapping S : D(S) ⊂ E → E is called ψ−uniformly

accretive if there exist mapping ψ ∈ Ψ and j(x− y) ∈ J(x− y) such that

(1.2) ⟨Sx− Sy, j(x− y)⟩ ≥ ψ(||x− y||), ∀x, y ∈ E.

Remark 1 1. Taking ψ(a) := ψ(a)a, ∀a ∈ [0,∞), (ψ ∈ Ψ), we get the

usual definitions of ψ− pseudocontractive and ψ− accretive mappings.

2. Taking ψ(a) := γa2; γ ∈ (0, 1), ∀a ∈ [0,∞), (ψ ∈ Ψ), we get the

usual definitions of strongly pseudocontractive and strongly accretive

mappings.

3. T is ψ−uniformly pseudocontractive iff S = I−T is ψ−uniformly

accretive.

It is known that T is strongly pseudocontractive if and only if (I−T )
is strongly accretive.
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In 2001, Xu and Ori [12] introduced the following implicit iteration

process for a finite family of nonexpansive mappings {Ti : i ∈ I} (here

I = {1, 2, ..., N}), with {αn} a real sequence in (0, 1), and an initial point

x0 ∈ K :

x1 = α1x0 + (1− α1)T1x1,

x2 = α2x1 + (1− α2)T2x2,
...

xN = αNxN−1 + (1− αN)TNxN ,

xN+1 = αN+1xN + (1− αN+1)T1xN+1,
...

which can written in the following compact form:

(1.3) xn = αnxn−1 + (1− αn)Tnxn, ∀n ≥ 1,

where Tn = Tn(modN) (here themodN function takes values in I). Xu and

Ori proved the weak convergence of this process to a common fixed point

of the finite family defined in a Hilbert space. They further remarked

that it is yet unclear what assumptions on the mappings and/or the

parameters {αn} are sufficient to guarantee the strong convergence of

the sequence {xn}.
In [7], Oslilike proved the following theorem.

Theorem 1 Let E be a real Banach space and K be a nonempty closed

convex subset of E. Let {Ti : i ∈ I} be N strictly pseudocontractive self-

mappings of K with F =
N∩
i=1

F (Ti) ̸= ϕ. Let {αn}∞n=1 be a real sequence

satisfying the conditions:

(i) 0 < αn < 1,

(ii)
∑∞

n=1(1− αn) = ∞,

(iii)
∑∞

n=1(1− αn)
2 <∞.
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From arbitrary x0 ∈ K, define the sequence {xn} by the implicit

iteration process (1.3). Then {xn} converges strongly to a common fixed

point of the mappings {Ti : i ∈ I} if and only if lim
n→∞

d(xn, F ) = 0.

Definition 3 A normed space E is said to satisfy Opial’s condition if

for any sequence {xn} in E, xn ⇀ x implies that lim supn→∞ ∥xn − x∥ <
lim supn→∞ ∥xn − y∥ for all y ∈ E with y ̸= x.

In [3], Chen et al proved the following theorem.

Theorem 2 Let K be a nonempty closed convex subset of a q-uniformly

smooth and p-uniformly convex Banach space E that has the Opial

property. Let s be any element in (0, 1) and let {Ti}Ni=1be a finite family of

strictly pseudocontractive self-maps of K such that {Ti}Ni=1, have at least

one common fixed point. For any point x0 in K and any sequence {αn}∞n=1

in (0, s), define the sequence {xn} by the implicit iteration process (1.3).

Then {xn} converges weakly to a common fixed point of {Ti}Ni=1.

Inspired and motivated by the above said facts, we suggest the

following implicit iteration process with errors and define the sequence

{xn} as follows

(1.4) xn = αnxn−1 + (1− αn)Tnxn + un, ∀n ≥ 1,

where Tn = Tn(modN), {αn} is a sequence in (0, 1) and {un} is a summable

sequence in K.

Clearly, this iteration process contains the process (1.3) as its special

case.

The purpose of this paper is to study the strong convergence of the

implicit iteration process (1.4) to a common fixed point for a finite family

of ψ−uniformly pseudocontractive and ψ−uniformly accretive mappings

in real Banach spaces. The results presented in this paper extend and

improve the corresponding results of Refs. [3, 7, 12].
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2 Main Results

The following lemma is now well known.

Lemma 3 Let J : E → 2E be the normalized duality mapping. Then for

any x, y ∈ E, we have

||x+ y||2 ≤ ||x||2 + 2⟨y, j(x+ y)⟩, ∀j(x+ y) ∈ J(x+ y).

Lemma 4 [5] Let {θn} be a sequence of nonnegative real numbers, {λn}
be a real sequence satisfying

0 ≤ λn ≤ 1,
∞∑
n=0

λn = ∞

and let ψ ∈ Ψ. If there exists a positive integer n0 such that

θ2n+1 ≤ θ2n − λnψ(θn+1) + σn,

for all n ≥ n0, with σn ≥ 0, ∀n ∈ N, and σn = 0(λn), then limn→∞ θn = 0.

Theorem 5 Let {T1, T2, ..., TN} : K → K be N, ψ−uniformly pseudo-

contractive mappings with {Tnxn} bounded and F =
N∩
i=1

F (Ti) ̸= ϕ. From

arbitrary x0 ∈ K, define the sequence {xn} by the implicit

iteration process (1.4) satisfying
∑∞

n=1(1 − αn) = ∞, lim
n→∞

(1 − αn) = 0

and ∥un∥ = 0(1−αn) . Then {xn} converges strongly to a common fixed

point of {T1, T2, ..., TN}.

Proof. Since each Ti is ψ−uniformly pseudocontractive, we have

from (1.1)

(2.1) ⟨Tix− Tiy, j(x− y)⟩ ≤ ||x− y||2 − ψ(||x− y||), i = 1, 2, · ··, N .

We know that the mappings {T1, T2, ..., TN} have a common fixed point

in K, say w, then the fixed point set F =
N∩
i=1

F (Ti) ̸= ϕ is nonempty.
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We will show that w is the unique fixed point of F . Suppose there exists

q ∈ F (T1) such that w ̸= q i.e., ∥w − q∥ > 0. Then

(AR) ψ(∥w − q∥) > 0.

Since ψ is strictly increasing with ψ(0) = 0. Then, from the definition of

ψ−uniformly pseudocontractive mapping,

||w − q||2 = ⟨w − q, j(w − q)⟩ = ⟨T1w − T1q, j(w − q)⟩
≤ ||w − q||2 − ψ(||w − q||),

implies

ψ(||w − q||) ≤ 0,

contracditing (AR), which implies the uniqueness. Hence F (T1) = {w}.
Similarly we can prove that F (Ti) = {w}; i = 2, 3, ..., N. Thus F = {w}.

We set

M1 = ||x0 − w||+ sup
n≥0

||Tnxn − w||,

M2 = 1 + sup
n≥0

||un||.

Obviously M1, M2 <∞. Let M3 =M1 +M2.

It is clear that ||x0 − w|| ≤ M1 < M3. Let ||xn−1 − w|| ≤ M1 < M3.

Next we will prove that ||xn − w|| ≤M3.

Consider

||xn − w|| = ||αnxn−1 + (1− αn)Tnxn + un − w||
= ||αn(xn−1 − w) + (1− αn)(Tnxn − w) + un||
≤ αn||xn−1 − w||+ (1− αn)||Tnxn − w||+ ∥un∥
≤ αnM1 + (1− αn)M1 +M2

= M1 +M2

= M3.
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So, from the above discussion, we conclude that the sequence {xn−w}
is bounded. Let M4 = sup

n≥0
||xn − w||.

Denote M =M3 +M4. Obviously M <∞.

The real function f : [0, ∞) → [0, ∞), defined by f(t) = t2 is

increasing and convex. For all λ ∈ [0, 1] and t1, t2 > 0 we have

(2.2) ((1− λ)t1 + λt2)
2 ≤ (1− λ)t21 + λt22.

Consider

||xn − w||2 = ||αnxn−1 + (1− αn)Tnxn + un − w||2

= ||αn(xn−1 − w) + (1− αn)(Tnxn − w) + un||2

≤ [αn ∥xn−1 − w∥+ (1− αn) ∥Tnxn − w∥+ ∥un∥]2

≤αn ∥xn−1 − w∥2 + (1− αn) ∥Tnxn − w∥2 + ∥un∥2 + 2M ∥un∥
≤∥xn−1 − w∥2 +M2(1− αn) + ∥un∥2 + 2M ∥un∥ . (2.3)

From lemma 1 and (1.4), we have

∥xn − w∥2 = ∥αnxn−1 + (1− αn)Tnxn + un − w∥2

= ∥αn(xn−1 − w) + (1− αn) (Tnxn − w) + un∥2

≤ αn
2||xn−1 − w||2 + 2 (1− αn) ⟨Tnxn − w, j(xn − w)⟩

+2 ⟨un, j(xn − w)⟩
≤ αn

2||xn−1 − w||2 + 2 (1− αn) ∥xn − w∥2

−2 (1− αn)ψ(∥xn − w∥) + 2M ∥un∥ . (2.4)



160 A. Rafiq

Substituting (2.3) in (2.4), and with the help of ∥un∥ = 0(1−αn) (implies

∥un∥ = (1− αn)tn; tn → 0 as n→ ∞) we get

∥xn − w∥2 ≤ [α2
n + 2(1− αn)]||xn−1 − w||2 − 2(1− αn)ψ(∥xn − w∥)

+2M2(1− αn)
2 + 2(1− α) ∥un∥2 + 4M(1− α) ∥un∥

+2M ∥un∥
=
[
1 + (1− αn)

2
]
||xn−1 − w||2 − 2(1− αn)ψ(∥xn − w∥)

+2M2(1− αn)
2 + 2(1− α) ∥un∥2 + 2M [1 + 2(1− α)] ∥un∥

≤ ||xn−1 − w||2 − 2(1− αn)ψ(∥xn − w∥) + 3M2(1− αn)
2

+2(1− α) ∥un∥2 + 6M ∥un∥
≤ ||xn−1 − w||2 − 2(1− αn)ψ(∥xn − w∥)
+(1− αn)[3M

2(1− αn) + 2(1 + 3M)tn]. (2.5)

Denote

θn = ||xn−1 − w||,
λn = 2(1− αn),

σn = (1− αn)[3M
2(1− αn) + 2(1 + 3M)tn].

Condition lim
n→∞

(1 − αn) = 0 assures the existence of a rank n0 ∈ N
such that λn = 2(1 − αn) ≤ 1, for all n ≥ n0. Now with the help of∑∞

n=1(1−αn) = ∞, lim
n→∞

(1−αn) = 0 and lemma 2, we obtain from (2.5)

that

lim
n→∞

||xn − w|| = 0,

completing the proof.

Corollary 6 Let {T1, T2, ..., TN} : K → K be N, ψ−uniformly pseudo-

contractive mappings with {Tnxn} bounded and F =
N∩
i=1

F (Ti) ̸= ϕ. From

arbitrary x0 ∈ K, define the sequence {xn} by the implicit iteration pro-

cess (1.3) satisfying
∑∞

n=1(1 − αn) = ∞ and lim
n→∞

(1 − αn) = 0 . Then

{xn} converges strongly to a common fixed point of {T1, T2, ..., TN}.
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Remark 2 Theorem 3 extend and improve the theorems 1-2 in the

following directions:

1) The strictly pseudocontractive mappings are replaced by the more

general ψ−uniformly pseudocontractive and ψ−uniformly accretive

mappings;

2) Theorem 3 holds in real Banach space whereas the results of theo-

rem 2 are in q-uniformly smooth and p-uniformly convex Banach space;

3) We do not need the assumption lim
n→∞

d(xn, F ) as in theorem 1;

4) Weak convergence in theorem 2 is replaced by the strong conver-

gence in theorem 3;

5) One can easily see that if we take αn = 1− 1√
n
, then

∑
(1−αn) = ∞,

but
∑

(1 − αn)
2 = ∞. Hence the conclusion of theorem 1 is not true in

all cases.
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