Regularity and Normality on L-Topological Spaces: (I)

Bayaz Daraby

Abstract

In the present paper, we define regularity and normality like strong S_1 regularity, S_1 regularity, weak S_1 regularity, strong S_1 normality, S_1 normality as well as weak S_1 normality on L-topological spaces. Also we investigate some of their properties and the relations between them.

2010 Mathematics Subject Classification: 54A40, 54D10, 54D15, 54D65, 03E72.

Key words and phrases: L-topological space, smooth topology, separation axioms, regularity, normality.

1 Introduction

The concept of fuzzy topology was first defined in 1968 by Chang [2] and redefined by Hutton and Reilly [4] and others. A new definition of fuzzy topology introduced by Badard [1] under the name of "smooth topology". The smooth topological space was rediscovered by Ramadan [5].

In the present work, it has been studied the concepts of separation axioms like strong S_1 regularity, S_1 regularity, weak S_1 regularity, strong S_1 normality, S_1 normality as well as weak S_1 normality on L-topological spaces. Also it has been investigated some of their properties and the relations between them.

2 Preliminaries

Throughout this paper, L, L' represent two completely distributive lattice with the smallest element 0 (or \bot) and the greatest element 1 (or \top), where $0 \neq 1$. We define $M(L)$ to be the set of all non-zero \lor-irreducible (or coprime) elements in L such
that \(a \in M(L) \) iff \(a \leq b \lor c \) implies \(a \leq b \) or \(a \leq c \). Let \(X \) be a non-empty usual set, and \(L^X \) be the set of all \(L \)-fuzzy sets on \(X \).

For each \(a \in L \), let \(\underline{a} \) denote the constant-valued \(L \)-fuzzy set with \(a \) as its value. Let \(\emptyset \) and \(1 \) be the smallest element and the greatest element in \(L^X \), respectively. For the empty set \(\emptyset \subset L \), we define \(\land \emptyset = 1 \) and \(\lor \emptyset = 0 \).

For every \(L \)-fuzzy subset \(A \in L^X \), define its support set by \(\{ x \in X : A(x) > 0 \} \), denoted by \(\text{supp}(A) \).

Definition 1 A \(L \)-fuzzy topology on \(X \) is a map \(\tau : L^X \to L \) satisfying the following three axioms:

1) \(\tau(\top) = \top \);
2) \(\tau(A \land B) \geq \tau(A) \land \tau(B) \) for every \(A, B \in L^X \);
3) \(\tau(\lor_{i \in \Delta} A_i) \geq \lor_{i \in \Delta} \tau(A_i) \) for every family \(\{ A_i | i \in \vartriangle \} \subseteq L^X \).

The pair \((X, \tau)\) is called an \(L \)-fuzzy topological space. For every \(A \in L^X \), \(\tau(A) \) is called the degree of openness of the fuzzy subset \(A \). For \(a \in L \) and a map \(\tau : L^X \to L \), we define
\[
\tau[a] = \{ A \in L^X | \tau(A) \geq a \}.
\]

Definition 2 A smooth topological space (sts) [3] is an ordered pair \((X, \tau)\), where \(X \) is a non-empty set and \(\tau : L^X \to L' \) is a mapping satisfying the following properties:

\((O1)\) \(\tau(\emptyset) = \tau(1) = 1_L \),
\((O2)\) \(\forall A_1, A_2 \in L^X, \tau(A_1 \cap A_2) \geq \tau(A_1) \land \tau(A_2) \),
\((O3)\) \(\forall I, \tau(\bigcup_{i \in I} A_i) \geq \bigwedge_{i \in I} \tau(A_i) \).

Definition 3 A smooth cotopology is defined as a mapping \(\Im : L^X \to L' \) which satisfies

\((C1)\) \(\Im(\emptyset) = \Im(1) = 1_L \),
\((C2)\) \(\forall B_1, B_2 \in L^X, \Im(B_1 \cup B_2) \geq \Im(B_1) \lor \Im(B_2) \),
\((C3)\) \(\forall I, \Im(\bigcap_{i \in I} B_i) \geq \bigwedge_{i \in I} \Im(B_i) \).

In this paper we suppose \(L' = L \).

The mapping \(\Im_t : L^X \to L' \), defined by \(\Im_t(A) = \tau(A^c) \) where \(\tau \) is a smooth topology on \(X \), is smooth cotopology on \(X \). Also \(\tau_\Im : L^X \to L' \), defined by \(\tau_\Im(A) = \Im(A^c) \) where \(\Im \) is a smooth cotopology on \(X \), is a smooth topology on \(X \) where \(A^c \) denotes the complement of \(A \) [3].

Definition 4 Let \(f : (X, \tau_1) \to (Y, \tau_2) \) be a mapping ; then [3], \(f \) is smooth continuous iff \(\Im_{\tau_2}(A) \leq \Im_{\tau_1}(f^{-1}(A)) \), \(\forall A \in L^Y \).
A map \(f : X \rightarrow Y \) is called smooth open (resp. closed) with respect to the smooth topologies \(\tau_1 \) and \(\tau_2 \) (resp. cotopologies \(\mathcal{S}_1 \) and \(\mathcal{S}_2 \)), respectively, iff for each \(A \in L^X \) we have \(\tau_1(A) \leq \tau_2(f(A)) \) (resp. \(\mathcal{S}_1(A) \leq \mathcal{S}_2(f(A)) \)), where

\[
f(C)(y) = \sup \{ C(x) : x \in f^{-1}(\{y\}) \}, \text{ if } f^{-1}(\{y\}) \neq \emptyset,
\]
and \(f(C)(y) = 0 \) otherwise.

Let \(\tau : L^X \rightarrow L \) be a sts, and \(A \in L^X \), then the \(\tau \)-smooth closure of \(A \), denoted by \(\overline{A} \), is defined by

\[
\overline{A} = A, \text{ if } \mathcal{S}_\tau(A) = 1_L, \text{ and } \overline{A} = \bigcap \{ F : F \in L^X, F \supseteq A, \mathcal{S}_\tau(F) > \mathcal{S}_\tau(A) \}, \text{ if } \mathcal{S}_\tau(A) \neq 1_L.
\]

A map \(f : X \rightarrow Y \) is called a smooth homeomorphism with respect to the smooth topologies \(\tau_1 \) and \(\tau_2 \) iff \(f \) is bijective and \(f \) and \(f^{-1} \) are smooth continuous.

Let \((X, \tau_1) \) and \((Y, \tau_2) \) be two smooth topological spaces and \(f : X \rightarrow Y \) a bijective map. The following statements are equivalent [3]:
1. \(f \) is a smooth homeomorphism,
2. \(f \) is a smooth open and smooth continuous,
3. \(f \) is a smooth closed and smooth continuous.
A property which is preserved under smooth homeomorphism is said to be a smooth topological property.

A map \(f : X \rightarrow Y \) is called L-preserving (resp. strictly L-preserving) with respect to the L-topologies \(\tau_{1[a]} \) and \(\tau_{2[a]} \), for each \(a \in M(L) \) respectively, iff for every \(A, B \in L^Y \) with \(\tau_2(A), \tau_2(B) \geq a \), we have

\[
\tau_2(A) \geq \tau_2(B) \Rightarrow \tau_1(f^{-1}(A)) \geq \tau_1(f^{-1}(B))
\]
(resp. \(\tau_2(A) > \tau_2(B) \Rightarrow \tau_1(f^{-1}(A)) > \tau_1(f^{-1}(B)) \) [3].

Let \(f : X \rightarrow Y \) be a strictly L-preserving and continuous map with respect to the L-topologies \(\tau_{1[a]} \) and \(\tau_{2[a]} \), respectively, then for every \(A \in L^Y \) with \(\tau_2(A) \geq a \), \(f^{-1}(A) \supseteq \overline{f^{-1}(A)} \).

3 Main results

Definition 7 A L-topology space \((X, \tau_{[a]})\) for each \(a \in M(L) \) is called
(a) strong \(s_1 \) regular (resp. strong \(S_2 \) regular) space iff for each \(C \in L^X \), satisfying \(\mathcal{S}_\tau(C) > 0 \), and each \(x \in X \) satisfying \(x \not\in \text{supp}C \), there exist \(A, B \in L^X \) with \(\tau(A), \tau(B) \geq a \) such that \(x \in \text{supp}A \) (resp. \(x \in \text{supp}(A \setminus B) \), \(\tau(A) \geq A(x) \), \(C \subseteq B, \tau(B) \geq \mathcal{S}_\tau(C) \) and \(A \cap B = \emptyset \) (resp. \(A \subseteq (B)^C \)),
(b) \(s_1 \) regular (resp. \(S_2 \) regular) space iff for each \(C \in L^X \), satisfying \(\mathcal{S}_\tau(C) > 0 \),
and each $x \in X$ satisfying $x \notin \text{supp} C$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $x \in \text{supp} A$ (resp. $x \in \text{supp} (A \setminus B), \tau(A) \geq A(x), C \subseteq B, \tau(B) \geq \exists_\tau(C)$ and $A \cap B = \emptyset$ (resp. $A \subseteq B^c$).

(c) weak S_1 regular (resp. weak S_2 regular) space iff for each $C \in L^X$, satisfying $\exists_\tau(C) > 0$, and each $x \in X$ satisfying $x \notin \text{supp} C$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $x \in \text{supp} A \setminus \text{supp} B^o$ (resp. $x \in \text{supp} (A \setminus B^o), \tau(A) \geq A(x), C \subseteq B, \tau(B) \geq \exists_\tau(C)$ and $A^o \cap B^o = \emptyset$ (resp. $A^o \subseteq (B^o)^c$).

Definition 8 An L-topology space (X, τ_a) for each $a \in M(L)$ is called
(a) strong S_1 normal (resp. strong S_2 normal) space iff for each $C, D \in L^X$ such that $C \subseteq (D^c)$ (resp. $C \cap D = \emptyset), \exists_\tau(C) > 0$ and $\exists_\tau(D) > 0$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $C \subseteq A, \tau(A) \geq \exists_\tau(C), D \subseteq B, \tau(B) \geq \exists_\tau(D)$ and $A \cap B = \emptyset$ (resp. $A \subseteq (B^c)^c$),
(b) S_1 normal (resp. S_2 normal) space iff for each $C, D \in L^X$ such that $C \subseteq (D^c)$ (resp. $C \cap D = \emptyset), \exists_\tau(C) > 0$ and $\exists_\tau(D) > 0$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $C \subseteq A, \tau(A) \geq \exists_\tau(C), D \subseteq B, \tau(B) \geq \exists_\tau(D)$ and $A \cap B = \emptyset$ (resp. $A \subseteq (B^c)^c$),
(c) weak S_1 normal (resp. weak S_2 normal) space iff for each $C, D \in L^X$ such that $C \subseteq (D^c)$ (resp. $C \cap D = \emptyset), \exists_\tau(C) > 0$ and $\exists_\tau(D) > 0$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $C \subseteq A, \tau(A) \geq \exists_\tau(C), D \subseteq B, \tau(B) \geq \exists_\tau(D)$ and $A^o \cap B^o = \emptyset$ (resp. $A^o \subseteq (B^o)^c$).

Lemma 1 Let (X, τ_a) be an L-topology space for each $a \in M(L), A, B \in L^X$ and $\tau(A), \tau(B) \geq a$. Then the following properties hold:
(i) $\text{supp} A \setminus \text{supp} B \subseteq \text{supp} (A \setminus B)$,
(ii) $\text{supp} A \setminus \text{supp} B \subseteq \text{supp} A \setminus \text{supp} B^o$,
(iii) $A \setminus B \subseteq A \setminus B^o$,
(iv) $A \cap B = \emptyset$ implies $A \subseteq B^c$.

Proof. (i) Consider $x \in \text{supp} A \setminus \text{supp} B$. Then we obtain $A(x) > 0$ and $B(x) = 0$. Hence, $\min(A(x), 1 - B(x)) = A(x) > 0$, i.e., $x \in \text{supp} (A \setminus B)$. The reverse inclusion in (i) is not true as can be seen from the following counterexample. Let $X = \{x_1, x_2\}, A(x_1) = 0.5, B(x_1) = 0.3$. Then we have $x_1 \in \text{supp} (A \setminus B)$ and $x_1 \notin \text{supp} A \setminus \text{supp} B$.
(ii) and (iii) easily follow from $B^o \subseteq B \subseteq \overline{B}$.
(iv) See [4].

Proposition 1 Let (X, τ_a) be an L-topology space for each $a \in M(L)$. Then the relationships as shown in Fig. 2. hold.

Proof. All the implications in Fig. 2 are straightforward consequences of Lemma 1. As an example we prove that strong S_1 normal implies strong S_2 normal. Suppose that (X, τ_a) is a strong S_1 normal space and let $C, D \in L^X$ such that $C \cap D = \emptyset, \exists_\tau(C) > 0$ and $\exists_\tau(D) > 0$.

\[\Box\]
From Lemma 1 (iv) it follows that $C \subseteq D^c$. Since $(X, \tau_{[a]})$ is strong S_1 normal there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $C \subseteq A, \tau(A) \geq \tau(C), D \subseteq B, \tau(B) \geq \tau(D)$ and $\overline{A} \cap \overline{B} = \emptyset$. From Lemma 1 it follows that $\overline{A} \subseteq (B)^c$ and hence $(X, \tau_{[a]})$ is strong S_2 normal.

strong S_1 regular \Rightarrow S_1 regular \Rightarrow weak S_1 regular

\[\downarrow \quad \downarrow \quad \downarrow \]

strong ST_2 regular \Rightarrow ST_2 regular \Rightarrow weak ST_2 regular

strong S_1 normal \Rightarrow S_1 normal \Rightarrow weak S_1 normal

\[\downarrow \quad \downarrow \quad \downarrow \]

strong S_2 normal \Rightarrow S_2 normal \Rightarrow weak S_2 normal

Fig. 2. Relationship between the different regularity and normality notions.

Proposition 2 The S_i ($i = 1, 2$) regularity (resp. normality) property is a topological property. when $f : (X, \tau_1) \rightarrow (Y, \tau_2)$ be an smooth homeomorphism or $f : (X, \tau_{1[a]}) \rightarrow (Y, \tau_{2[a]})$ be an homeomorphism for each $a \in M(L)$.

Proof. As an example we give the proof for S_2 normality when $f : X \rightarrow Y$ be a homeomorphism from S_2 normal space $(X, \tau_{1[a]})$ onto a space $(Y, \tau_{2[a]})$ for each $a \in M(L)$. Let $C, D \in L^Y$ such that $C \cap D = \emptyset, \exists \tau_2(C) > 0$ and $\exists \tau_2(D) > 0$. Since f is bijective and continuous, from $C' \in \tau_{2[a]}$ we have $f^{-1}(C') \in \tau_{1[a]}$. From here, $\tau_2(C') \geq a$ then $\tau_1(f^{-1}(C')) \geq a$. It follows that $\tau_1(f^{-1}(C')) \geq \tau_2(C')$, hence $\tau_1((f^{-1}(C'))') \geq \tau_2(C') > 0$.

Now we obtain that $\exists \tau_2(f^{-1}(C)) \geq \exists \tau_2(C) > 0$. Similarly, $\exists \tau_1(f^{-1}(D)) \geq \exists \tau_2(D) > 0$. We know that $f^{-1}(C) \cap f^{-1}(D) = f^{-1}(C \cap D) = f^{-1}(\emptyset) = \emptyset$. Since $(X, \tau_{1[a]})$ is S_2 normal, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $f^{-1}(C) \subseteq A, \tau_1(A) \geq \tau_1(f^{-1}(C)), f^{-1}(D) \subseteq B, \tau_1(B) \geq \tau_1(f^{-1}(D))$ and $A \subseteq B^c$. Since f is L-open and L-closed, it follows that $\tau_2(f(A)) \geq \tau_1(A), \tau_2(f(B)) \geq \tau_1(B), \exists \tau_2(C) \geq \exists \tau_1(f^{-1}(C))$ and $\exists \tau_2(D) \geq \exists \tau_1(f^{-1}(D))$, and hence, $\tau_2(f(A)) \geq \exists \tau_1(f^{-1}(C)) = \exists \tau_2(C), \tau_2(f(B)) \geq \exists \tau_1(f^{-1}(D)) = \exists \tau_2(D), C \subseteq f(A), D \subseteq f(B)$ and $f(A) \subseteq f(B^c) = (f(B))^c$. So $(Y, \tau_{2[a]})$ is S_2 normal.

Proposition 3 Let $f : X \rightarrow Y$ be an injective, L-closed, L-continuous map with respect to the L-topologies $\tau_{1[a]}$ and $\tau_{2[a]}$ respectively for each $a \in M(L)$. If $(Y, \tau_{2[a]})$ is S_i ($i = 1, 2$) regular (resp. normality); then so is $(X, \tau_{1[a]})$.
Proof. As an example we give the proof for S_1 regularity. Let $C \in L^X$, satisfy $\exists \tau_1(C) > 0$ and let $x \in X$ be such that $x \notin suppC$. Since f is injective and L-closed we have $f(x) \notin supp(C)$ and $\exists \tau_2(f(C)) \geq \exists \tau_1(C) > 0$. Since (Y, τ_2) is S_1 regular, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $f(x) \in suppA, \tau_2(A) \geq A(f(x)), f(C) \subseteq B, \tau_2(B) \geq \exists \tau_2(f(C))$ and $A \cap B = 0$. Since f is injective and L-continuous, if $A \in \tau_{[a]}$ then $f^{-1}(A) \in \tau_{[a]}$. Hence when $\tau_2(A) \geq a$ then $\tau_1(f^{-1}(A)) \geq a$. Thus $\tau_1(f^{-1}(A)) \geq \tau_2(A) \geq A(f(x)) = f^{-1}(A)(x)$. Similarly, $\tau_1(f^{-1}(B)) \geq \tau_2(B) \geq \exists \tau_1(C)$. We know that $C \subseteq (f^{-1}(B)), f^{-1}(A)(x) = A(f(x)) > 0$, i.e., $x \in supp f^{-1}(A)$ and $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B) = f^{-1}(0) = 0$ and hence $(X, \tau_{[a]})$ is S_1 regular.

Proposition 4 Let $f : X \rightarrow Y$ be a strictly L-preserving, injective, L-closed and L-continuous map with respect to the L-topologies $\tau_{[a]}$ and $\tau_{[a]}$ respectively for each $a \in M(L)$. If $(Y, \tau_{[a]})$ is strong S_i ($i = 1, 2$) regular (resp. normal); then so is $(X, \tau_{[a]})$.

Proof. As an example we proof the strong S_2 regularity. Let $C \in L^X$, satisfying $\exists \tau_1(C) > 0$ and let $x \in X$ such that $x \notin suppC$. Since f is injective and L-closed we have $f(x) \notin supp(C)$ and $\exists \tau_2(f(C)) \geq \exists \tau_1(C) > 0$. Since $(Y, \tau_{[a]})$ is S_2 regular, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $f(x) \in supp(A \setminus B), \tau_2(A) \geq A(f(x)), f(C) \subseteq B, \tau_2(B) \geq \exists \tau_2(f(C))$ and $A \subseteq (B)^c$. As f is injective, L-continuous and strictly L-preserving it follows that $\tau_1(f^{-1}(A)) \geq \tau_2(A) \geq A(f(x)) = f^{-1}(A)(x), \tau_1(f^{-1}(B)) \geq \exists \tau_1(C), C \subseteq (f^{-1}(B)), [f^{-1}(A) \setminus f^{-1}(B)](x) = (f^{-1}(A) \cap (f^{-1}(B))^c)(x) \geq (A \cap f^{-1}(B)^c)(x) = f^{-1}(A \setminus B)(x) = (A \setminus B)f(x) > 0$, i.e., $x \in supp(f^{-1}(A) \setminus f^{-1}(B))$ and $f^{-1}(A) \subseteq f^{-1}(B)^c \subseteq (f^{-1}(B))^c$, and hence $(X, \tau_{[a]})$ is strong S_2 regular.

References

Bayaz Daraby
University of Maragheh
Department of Mathematics
Maragheh, Iran
e-mail: daraby@maragheh.ac.ir