On Generalized Continuous Maps in Čech Closure Spaces ¹

C. Boonpok

Abstract

The purpose of the present paper is to introduce the concept of generalized continuous maps by using generalized closed sets and investigate some of their characterizations.

2000 Mathematics Subject Classification: 54A05.

Key words and phrases: Čech closure operator, Čech closure space, generalized closed set, generalized continuous map.

1 Introduction

Generalized closed sets, briefly g-closed sets, in a topological space were introduced by N. Levine [8] in order to extend some important properties of closed sets to a larger family of sets. For instance, it was shown that compactness, normality and completeness in a uniform space are inherited by g-closed subsets. K. Balachandran, P. Sundaram and H. Maki [1] introduced the notion of generalized continuous maps, briefly g-continuous maps, by using g-closed sets and studied some of their properties.

Čech closure spaces were introduced by E.Čech in [3] and then studied by many authors, see e.g. [4], [5], [10] and [11]. In this paper, we introduce generalized closed (g-closed) sets in a Čech closure space. Generalized open (g-open) subsets of Čech closure spaces are also introduced and their properties are studied. Using the notion of g-closed sets, we introduce generalized continuous maps, which are studied too.

¹Received 07 August, 2009
Accepted for publication (in revised form) 21 February, 2011
2 Preliminaries

An operator $u : P(X) \to P(X)$ defined on the power set $P(X)$ of a set X satisfying the axioms:

(C1) $u\emptyset = \emptyset$,

(C2) $A \subseteq uA$ for every $A \subseteq X$,

(C3) $u(A \cup B) = uA \cup uB$ for all $A, B \subseteq X$.

is called a Čech closure operator and the pair (X, u) is a Čech closure space. For short, the space will be noted by X as well, and called a closure space. A closure operator u on a set X is called idempotent if $uA = uuA$ for all $A \subseteq X$.

A subset A is closed in the Čech closure space (X, u) if $uA = A$ and it is open if its complement is closed. The empty set and the whole space are both open and closed.

A Čech closure space (Y, v) is said to be a subspace of (X, u) if $Y \subseteq X$ and $vA = uA \cap Y$ for each subset $A \subseteq Y$. If Y is closed in (X, u), then the subspace (Y, v) of (X, u) is said to be closed too.

Let (Y, v) be a Čech closed subspace of (X, u). If F is a closed subset of (Y, v), then F is a closed subset of (X, u).

Let (X, u) and (Y, v) be Čech closure spaces. A map $f : (X, u) \to (Y, v)$ is said to be continuous if $f(uA) \subseteq vf(A)$ for every subset $A \subseteq X$.

One can see that a map $f : (X, u) \to (Y, v)$ is continuous if and only if $uf^{-1}(B) \subseteq f^{-1}(vB)$ for every subset $B \subseteq Y$. Clearly, if $f : (X, u) \to (Y, v)$ is continuous, then $f^{-1}(F)$ is a closed subset of (X, u) for every closed subset F of (Y, v).

Let (X, u) and (Y, v) be Čech closure spaces. A map $f : (X, u) \to (Y, v)$ is said to be closed (resp. open) if $f(F)$ is a closed (resp. open) subset of (Y, v) whenever F is a closed (resp. open) subset of (X, u).

The product of a family $\{(X_\alpha, u_\alpha) : \alpha \in I\}$ of Čech closure spaces, denoted by $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$, is the Čech closure space $\left(\prod_{\alpha \in I} X_\alpha, u \right)$ where $\prod_{\alpha \in I} X_\alpha$ denotes the cartesian product of sets X_α, $\alpha \in I$, and u is the Čech closure operator generated by the projections $\pi_\alpha : \prod_{\alpha \in I} (X_\alpha, u_\alpha) \to (X_\alpha, u_\alpha)$, $\alpha \in I$, i.e., is defined by $uA = \prod_{\alpha \in I} u_\alpha \pi_\alpha(A)$ for each $A \subseteq \prod_{\alpha \in I} X_\alpha$.

Clearly, if $\{(X_\alpha, u_\alpha) : \alpha \in I\}$ is a family of Čech closure spaces, then the projection map $\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha) \to (X_\beta, u_\beta)$ is closed and continuous for every $\beta \in I$.

Proposition 1 Let $\{(X_\alpha, u_\alpha) : \alpha \in I\}$ be a family of Čech closure spaces and let $\beta \in I$. Then F is a closed subset of (X_β, u_β) if and only if $F \times \prod_{\alpha \in I} (X_\alpha, u_\alpha)$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$.

On Generalized Continuous Maps in Čech Closure Spaces

Proof. Let F be a closed subset of (X_β, u_β). Since π_β is continuous, $\pi_\beta^{-1}(F)$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$. But $\pi_\beta^{-1}(F) = F \times \prod_{\alpha \in I, \alpha \neq \beta} X_\alpha$, hence $F \times \prod_{\alpha \in I, \alpha \neq \beta} X_\alpha$ is a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$.

Conversely, let $F \times \prod_{\alpha \in I, \alpha \neq \beta} X_\alpha$ be a closed subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$. Since π_β is closed, $\pi_\beta(F \times \prod_{\alpha \in I, \alpha \neq \beta} X_\alpha) = F$ is a closed subset of (X_β, u_β).

The following statement is evident:

Proposition 2 Let $\{(X_\alpha, u_\alpha) : \alpha \in I\}$ be a family of Čech closure spaces and let $\beta \in I$. Then G is an open subset of (X_β, u_β) if and only if $G \times \prod_{\alpha \in I, \alpha \neq \beta} X_\alpha$ is an open subset of $\prod_{\alpha \in I} (X_\alpha, u_\alpha)$.

3 Generalized Closed Sets

In this section, we introduce a new class of closed sets in Čech closure spaces and study some of their properties.

Definition 1 Let (X, u) be a Čech closure space. A subset $A \subseteq X$ is called a generalized closed set, briefly a g-closed set, if $uA \subseteq G$ whenever G is an open subset of (X, u) with $A \subseteq G$. A subset $A \subseteq X$ is called a generalized open set, briefly a g-open set, if its complement is g-closed.

Remark 1 Every closed set is g-closed. The converse is not true as can be seen from the following example.

Example 1 Let $X = \{1, 2\}$ and define a Čech closure operator u on X by $u\emptyset = \emptyset$ and $u\{1\} = u\{2\} = uX = X$. Then $\{1\}$ is g-closed but it is not closed.

Proposition 3 Let (X, u) be a Čech closure space. If A and B are g-closed subsets of (X, u), then $A \cup B$ is g-closed.

Proof. Let G be an open subset of (X, u) such that $A \cup B \subseteq G$. Then $A \subseteq G$ and $B \subseteq G$. Since A and B are g-closed, $uA \subseteq G$ and $uB \subseteq G$. Consequently, $u(A \cup B) = uA \cup uB \subseteq G$. Therefore, $A \cup B$ is g-closed.

Proposition 4 Let (X, u) be a Čech closure space. If A is g-closed and F is closed in (X, u), then $A \cap F$ is g-closed.

Proof. Let G be an open subset of (X, u) such that $A \cap F \subseteq G$. Then $A \subseteq G \cup (X - F)$ and so $uA \subseteq G \cup (X - F)$. Then $uA \cap F \subseteq G$. Since F is closed, $u(A \cap F) \subseteq G$. Hence, $A \cap F$ is g-closed.
Proposition 5 Let \((Y, v)\) be a closed subspace of \((X, u)\). If \(F\) is a g-closed subset of \((Y, v)\), then \(F\) is a g-closed subset of \((X, u)\).

Proof. Let \(G\) be an open subset of \((X, u)\) such that \(F \subseteq G\). Then \(F \subseteq G \cap Y\).

Since \(F\) is g-closed and \(G \cap Y\) is open in \((Y, v)\), \(uF \cap Y = vF \subseteq G\). But \(Y\) is a closed subset of \((X, u)\) and \(uF \subseteq G\). Hence, \(F\) is a g-closed subset of \((X, u)\).

Proposition 6 Let \((X, u)\) be a Čech closure space. A set \(A \subseteq X\) is g-open if and only if \(F \subseteq X - u(X - A)\) whenever \(F\) is closed and \(F \subseteq A\).

Proof. Suppose that \(A\) is g-open and let \(F\) be a closed subset of \((X, u)\) such that \(F \subseteq A\). Then \(X - A \subseteq X - F\). But \(X - A\) is g-closed and \(X - F\) is open. It follows that \(u(X - A) \subseteq X - F\) and hence \(F \subseteq X - u(X - A)\).

Conversely, let \(G\) be an open subset of \((X, u)\) such that \(X - A \subseteq G\). Then \(X - G \subseteq A\). Since \(X - G\) is closed, \(X - G \subseteq X - u(X - A)\). Consequently, \(u(X - A) \subseteq G\). Hence, \(X - A\) is g-closed and so \(A\) is g-open.

Proposition 7 Let \(\{(X_\alpha, u_\alpha) : \alpha \in I\}\) be a family of Čech closure spaces and let \(\beta \in I\). Then \(G\) is a g-open subset of \((X_\beta, u_\beta)\) if and only if \(G \times \prod_{\alpha \neq \beta} X_\alpha\) is a g-open subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha)\).

Proof. Let \(F\) be a closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha)\) such that \(F \subseteq \prod_{\alpha \in I} X_\alpha\). Then \(\pi_\beta(F) \subseteq G\). Since \(\pi_\beta(F)\) is closed and \(G\) is g-open in \((X_\beta, u_\beta)\), \(\pi_\beta(F) \subseteq X_\beta - u_\beta(X_\beta - G)\). Therefore, \(F \subseteq \pi_\beta^{-1}(X_\beta - u_\beta(X_\beta - G)) = \prod_{\alpha \in I} X_\alpha - \prod_{\alpha \in I} u_\alpha \pi_\alpha \left(\prod_{\alpha \in I} X_\alpha - G \times \prod_{\alpha \in I} X_\alpha \right)\).

By Proposition 6, \(G \times \prod_{\alpha \in I} X_\alpha\) is a g-open subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha)\).

Conversely, let \(F\) be a closed subset of \((X_\beta, u_\beta)\) such that \(F \subseteq G\). Then \(F \times \prod_{\alpha \neq \beta} X_\alpha \subseteq G \times \prod_{\alpha \in I} X_\alpha\). Since \(F \times \prod_{\alpha \in I} X_\alpha\) is closed and \(G \times \prod_{\alpha \in I} X_\alpha\) is g-open in \(\prod_{\alpha \in I} (X_\alpha, u_\alpha)\), \(F \times \prod_{\alpha \neq \beta} X_\alpha \subseteq G \times \prod_{\alpha \in I} X_\alpha - \prod_{\alpha \in I} u_\alpha \pi_\alpha \left(\prod_{\alpha \in I} X_\alpha - G \times \prod_{\alpha \in I} X_\alpha \right)\) by Proposition 6. Therefore, \(\prod_{\alpha \in I} u_\alpha \pi_\alpha \left((X_\beta - G) \times \prod_{\alpha \in I} X_\alpha \right) \subseteq \prod_{\alpha \in I} X_\alpha - F \times \prod_{\alpha \in I} X_\alpha = (X_\beta - F) \times \prod_{\alpha \in I} X_\alpha\).

Consequently, \(u_\beta(X_\beta - G) \subseteq X_\beta - F\) implies \(F \subseteq X_\beta - u_\beta(X_\beta - G)\). Hence, \(G\) is a g-open subset of \((X_\beta, u_\beta)\).

Proposition 8 Let \(\{(X_\alpha, u_\alpha) : \alpha \in I\}\) be a family of Čech closure spaces and let \(\beta \in I\). Then \(F\) is a g-closed subset of \((X_\beta, u_\beta)\) if and only if \(F \times \prod_{\alpha \neq \beta} X_\alpha\) is a g-closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha)\).
Proof. Let \(F \) be a g-closed subset of \((X_\beta, u_\beta)\). Then \(X_\beta - F \) is a g-open subset of \((X_\beta, u_\beta)\). By Proposition 7, \((X_\beta - F) \times \prod_{\alpha \in I} X_\alpha = \prod_{\alpha \in I} X_\alpha - F \times \prod_{\alpha \in I} X_\alpha \) is a g-open subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha) \). Hence, \(F \times \prod_{\alpha \in I} X_\alpha \) is a g-closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha) \).

Conversely, let \(G \) be an open subset of \((X_\beta, u_\beta)\) such that \(F \subseteq G \). Then \(F \times \prod_{\alpha \in I} X_\alpha \subseteq G \times \prod_{\alpha \in I} X_\alpha \). Since \(F \times \prod_{\alpha \in I} X_\alpha \) is g-closed and \(G \times \prod_{\alpha \in I} X_\alpha \) is open in \(\prod_{\alpha \in I} (X_\alpha, u_\alpha) \), \(\prod_{\alpha \in I} u_\alpha \pi_\alpha (F \times \prod_{\alpha \in I} X_\beta) \subseteq G \times \prod_{\alpha \in I} X_\alpha \). Consequently, \(u_\beta F \subseteq G \).

Therefore, \(F \) is a g-closed subset of \((X_\beta, u_\beta)\).

Proposition 9 Let \(\{(X_\alpha, u_\alpha) : \alpha \in I\} \) be a family of \v{C}ech closure spaces. For each \(\beta \in I \), let \(\pi_\beta : \prod_{\alpha \in I} (X_\alpha, u_\alpha) \to (X_\beta, u_\beta) \) be the projection map. Then

(i) If \(F \) is a g-closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha) \), then \(\pi_\beta(F) \) is a g-closed subset of \((X_\beta, u_\beta)\).

(ii) If \(F \) is a g-closed subset of \((X_\beta, u_\beta)\), then \(\pi_\beta^{-1}(F) \) is a g-closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha) \).

Proof. (i) Let \(F \) be a g-closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha) \) and let \(G \) be an open subset of \((X_\beta, u_\beta)\) such that \(\pi_\beta(F) \subseteq G \). Then \(F \subseteq \pi_\beta^{-1}(G) = \prod_{\alpha \in I} X_\alpha \). Since \(F \) is g-closed and \(G \times \prod_{\alpha \in I} X_\alpha \) is open, \(\prod_{\alpha \in I} u_\alpha \pi_\alpha (F \times \prod_{\alpha \in I} X_\beta) \subseteq G \times \prod_{\alpha \in I} X_\alpha \). Consequently, \(u_\beta \pi_\beta(F) \subseteq G \).

Hence, \(\pi_\beta(F) \) is a g-closed subset of \((X_\beta, u_\beta)\).

(ii) Let \(F \) be a g-closed subset of \((X_\beta, u_\beta)\). Then \(\pi_\beta^{-1}(F) = F \times \prod_{\alpha \in I} X_\alpha \). By Proposition 8, \(F \times \prod_{\alpha \in I} X_\alpha \) is a g-closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha) \). Therefore, \(\pi_\beta^{-1}(F) \) is a g-closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha) \).

4 Generalized Continuous Maps

In this section, we introduce concept of generalized continuous maps by using the notion of generalized closed sets and investigate some of their characterizations.

Definition 2 Let \((X, u)\) and \((Y, v)\) be \v{C}ech closure spaces. A map \(f : (X, u) \to (Y, v) \) is said to be g-continuous if \(f^{-1}(F) \) is a g-closed subset of \((X, u)\) for every closed subset \(F \) of \((Y, v)\).
Clearly, if \(f : (X, u) \to (Y, v) \) is \(g \)-continuous, then \(f^{-1}(G) \) is a \(g \)-open subset of \((X, u)\) for every open subset \(G \) of \((Y, v)\).

Remark 2 Every continuous map is \(g \)-continuous. The converse is not true as can be seen from the following example.

Example 2 Let \(X = \{1, 2, 3\} = Y \) and define a Čech closure operator \(u \) on \(X \) by \(u\emptyset = \emptyset, u\{1\} = u\{2\} = u\{1, 2\} = \{1, 2\}, u\{3\} = \{3\} \) and \(u\{1, 3\} = u\{2, 3\} = uX = X \). Define a Čech closure operator \(v \) on \(Y \) by \(v\emptyset = \emptyset, v\{1\} = \{1, 2\}, v\{2\} = \{2\}, v\{3\} = \{3\}, v\{1, 2\} = \{1, 2\}, v\{2, 3\} = \{2, 3\} \) and \(v\{1, 3\} = vY = Y \). Let \(\varphi : (X, u) \to (Y, v) \) be defined by \(\varphi(1) = 1, \varphi(2) = 3, \varphi(3) = 2 \). It easy to see that \(\varphi \) is \(g \)-continuous but not continuous because \(\varphi(u\{1, 3\}) \nsubseteq v\varphi(\{1, 3\}) \).

Lemma 1 Let \((A, u_A) \) be a closed subspace of \((X, u)\). If \(G \) is an open subset of \((A, u_A)\), then \(G \) is an open subset of \((X, u)\).

Proof. Let \(G \) be an open subset of \((X, u_A)\). Then \(A - G \) is a closed subset of \((X, u_A)\), hence \(u_A(A - G) = A - G \). Therefore, \(u(A - G) \cap A = A - G \). Since \(A \) is a closed subset of \((X, u)\), \(u(A - G) = A - G \). Hence, \(A - G \) is a closed subset of \((X, u)\). Consequently, \(G \) is an open subset of \((X, u)\).

Regarding the restriction \(f | H \) of a map \(f : (X, u) \to (Y, v) \) to a subset \(H \) of \(X \), we have the following:

Proposition 10 Let \((X, u), (Y, v)\) be Čech closure space and let \((H, u_H)\) be a closed subspace of \((X, u)\). If \(f : (X, u) \to (Y, v) \) is \(g \)-continuous, then the restriction \(f | H : (H, u_H) \to (Y, v) \) is \(g \)-continuous.

Proof. Let \(F \) be a closed subset of \((Y, v)\). Then the set \(M = (f | H)^{-1}(F) = f^{-1}(F) \cap H \) is a \(g \)-closed subset of \((X, u)\) by Proposition 4. Since \((f | H)^{-1}(F) = M \), it is sufficient to show that \(M \) is a \(g \)-closed subset of \((H, u_H)\). Let \(G \) be an open subset of \((H, u_H)\) such that \(M \subseteq G \). Then \(G \) is an open subset of \((X, u)\) by Lemma 1. Since \(M \) is \(g \)-closed and \(H \) is a \(g \)-closed subset of \((X, u)\), \(u_H(M) = uM \cap H = uM \subseteq G \). Therefore, \((f | H)^{-1}(F) \) is a \(g \)-closed subset of \((H, u_H)\). Hence, \(f | H \) is \(g \)-continuous.

In Proposition 10, the assumption of closedness of \(H \) cannot be removed as can be seen from the following example.

Example 3 Let \(X = \{1, 2, 3\} \) and define a Čech closure operator \(u \) on \(X \) by \(u\emptyset = \emptyset, u\{2\} = \{1, 2\} \) and \(u\{1\} = u\{3\} = u\{1, 2\} = u\{2, 3\} = uX = X \). Let \(Y = \{a, b\} \) and define a Čech closure operator \(v \) on \(Y \) by \(v\emptyset = \emptyset, v\{a\} = \{a\} \) and \(v\{b\} = vY = Y \). Let \(f : (X, u) \to (Y, v) \) be defined by \(f(1) = f(3) = a \) and \(f(2) = b \). Then \(H = \{2, 3\} \) is not a closed subset of \((X, u)\) and \(f \) is \(g \)-continuous. But the restriction \(f | H \) is not \(g \)-continuous.
Proposition 11 Let \((X, u)\) and \((Y, v)\) be Čech closure spaces. Let \(A\) and \(B\) be closed subsets of \((X, u)\) such that \(X = A \cup B\). Let \(f : (A, u_A) \to (Y, v)\) and \(g : (B, u_B) \to (Y, v)\) be g-continuous maps such that \(f(x) = g(x)\) for every \(x \in A \cap B\). Let \(h : X \to Y\) be defined by \(h(x) = f(x)\) if \(x \in A\) and \(h(x) = g(x)\) if \(x \in B\). Then \(h : (X, u) \to (Y, v)\) is g-continuous.

Proof. Let \(F\) be a closed subset of \((Y, v)\). Clearly, \(h^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)\). Since \(f : (A, u_A) \to (Y, v)\) and \(g : (B, u_B) \to (Y, v)\) are g-continuous, \(f^{-1}(F)\) and \(g^{-1}(F)\) are g-closed subsets of \((A, u_A)\) and \((B, u_B)\), respectively. As \(A\) is a closed subset of \((X, u)\), \(f^{-1}(F)\) is a g-closed subset of \((X, u)\) by Proposition 5. Similarly, \(g^{-1}(F)\) is a g-closed subset of \((X, u)\). By Proposition 3, \(f^{-1}(F) \cup g^{-1}(F)\) is a g-closed subset of \((X, u)\). Therefore, \(h^{-1}(F)\) is a g-closed subset of \((X, u)\). Hence, \(h\) is g-continuous.

The following statement is obvious:

Proposition 12 Let \((X, u)\), \((Y, v)\) and \((Z, w)\) be Čech closure spaces. If \(f : (X, u) \to (Y, v)\) is g-continuous and \(g : (Y, v) \to (Z, w)\) is continuous, then \(g \circ f : (X, u) \to (Z, w)\) is g-continuous.

Proposition 13 Let \((X, u)\) be a Čech closure space and let \(\{ (Y_\alpha, v_\alpha) : \alpha \in I \}\) be a family of Čech closure spaces. Let \(f : X \to \prod_{\alpha \in I} Y_\alpha\) be a map. If \(f : (X, u) \to \prod_{\alpha \in I} (Y_\alpha, v_\alpha)\) is g-continuous, then \(\pi_\alpha \circ f : (X, u) \to (Y_\alpha, v_\alpha)\) is g-continuous for each \(\alpha \in I\).

Proof. Let \(f\) be g-continuous. Since \(\pi_\alpha\) is continuous for each \(\alpha \in I\), also \(\pi_\alpha \circ f\) is g-continuous for each \(\alpha \in I\).

Proposition 14 Let \(\{(X_\alpha, u_\alpha) : \alpha \in I\}\) and \(\{(Y_\alpha, v_\alpha) : \alpha \in I\}\) be families of Čech closure spaces. For each \(\alpha \in I\), let \(f_\alpha : X_\alpha \to Y_\alpha\) be a map and \(f : \prod_{\alpha \in I} X_\alpha \to \prod_{\alpha \in I} Y_\alpha\) be the map defined by \(f((x_\alpha)_{\alpha \in I}) = (f_\alpha(x_\alpha))_{\alpha \in I}\). If \(f : \prod_{\alpha \in I} (X_\alpha, u_\alpha) \to \prod_{\alpha \in I} (Y_\alpha, v_\alpha)\) is g-continuous, then \(f_\alpha : (X_\alpha, u_\alpha) \to (Y_\alpha, v_\alpha)\) is g-continuous for each \(\alpha \in I\).

Proof. Let \(\beta \in I\) and let \(F\) be a closed subset of \((Y_\beta, v_\beta)\). Then \(F \times \prod_{\alpha \neq \beta} Y_\alpha\) is a closed subset of \(\prod_{\alpha \in I} (Y_\alpha, v_\alpha)\). Since \(f\) is g-continuous, \(f^{-1}(F \times \prod_{\alpha \neq \beta} Y_\alpha) = f_\beta^{-1}(F) \times \prod_{\alpha \neq \beta} X_\alpha\) is a g-closed subset of \(\prod_{\alpha \in I} (X_\alpha, u_\alpha)\). By Proposition 8, \(f_\beta^{-1}(F)\) is a g-closed subset of \((X_\beta, u_\beta)\). Hence, \(f_\beta\) is g-continuous.

References

Chawalit Boonpok
Mahasarakham University
Faculty of Science
Department of Mathematics
Mahasarakham, Thailand 44150
e-mail: chawalit.b@msu.ac.th