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A normed spaces generated by a real

sequence

Silviu Crăciunaş

Abstract

We consider a fixed real convergent sequence (an)n and the set of

all sequences (xn)n for which the sequence (xn · an)n is also conver-

gent. This paper presents the construction of a real normed spaces

defined by this sequences.
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In the following we will denote by (c) the set of all convergent sequences

and by (m) the set of all bounded sequences.

Let (an)n be a real sequence convergent to a.

Definition 1. We say that a sequnce (xn)n is (an)n-convergent if the se-

quence (xn · an)n is convergent. We denote by (c(an)n) the set of all (an)n-

convergent sequences.

85



86 Silviu Crăciunaş

Proposition 1 The set (c(an)n) verifies the properties:

1. (c) ⊂ (c(an)n)

2. If (an)n → a with a 6= 0 then (c(an)n) = (c).

3. If (an)n → 0 then (m) ⊂ (c(an)n).

Proof. 1. Indeed, if (xn)n ∈ (c), then the sequence (xn · an)n ∈ (c).

2. Suppose that (xn)n ∈ (c(an)n). Than the sequence (xn · an)n is

convergent. Because (an)n → a and a 6= 0, there exists n0 such that an 6= 0

for any n > n0. For n > n0 we have

xn = (xn · an) · 1

an

and since the sequences

(
1

an

)n>n0 , (xn · an)n>n0

are convergent, it would follow that the sequence (xn)n>n0 is convergent as

well.

3. If (xn)n ∈ (m) and (an)n → 0 the sequence (xn · an)n is obviously

convergent to 0 and consequently, (xn)n ∈ (c(an)n).

Remark 1. If an → 0 there are divergent sequences belonging to the set

(c(an)n).

Indeed, if an = 1
n2 , the sequence (xn)n defined by xn = n belong to the

set (c(an)n).

It results that (c(an)n) becomes very rich in elements when (an)n con-

verges to 0. In this conditions, we will study the space (c(an)n) only for this
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case, obtaining some properties which characterize together the convergent

sequences as well as the divergent ones.

Theorem 1. The space (c(an)n) is a real linear space relative to the usual

addition of sequences

(xn)n + (yn)n = (xn + yn)n,

respectively to the multiplication with a scalar

λ(xn)n = (λxn)n.

Proof. If (xn)n, (yn)n ∈ (c(an)n) then ((xn + yn)an)n = (xnan)n + (ynan)n

is convergent and (xn + yn)n ∈ (c(an)n). Similarly, if (xn)n is a suite from

(c(an)n) and λ ∈ R then λ(xn)n = (λxn)n is convergent and λ(xn)n ∈
(c(an)n).

Theorem 2. The binary relation defined on (c(an)n) by (xn)n ∼ (yn)n if

and only if

lim
n→∞

xnan = lim
n→∞

ynan

is an equivalence relation.

The proof is immediately.

Theorem 3. The quotient space (c(an)n)/ ∼, denoted by (C(an)n) is also

a real linear space.

Proof. We will show that the equivalence relation ∼ is compatible with

the linear structure of (c(an)n).
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Let (xn)n ∼ (x′n)n and (yn)n ∼ (y′n)n. Then,

lim
n→∞

(xn + yn)an = lim
n→∞

(xnan + ynan) = lim
n→∞

xnan + lim
n→∞

ynan

and

lim
n→∞

(x′n + y′n)an = lim
n→∞

(x′nan + y′nan) = lim
n→∞

x′nan + lim
n→∞

y′nan.

But

lim
n→∞

xnan = lim
n→∞

x′nan and lim
n→∞

ynan = lim
n→∞

y′nan

and, consequently, (xn + yn)n ∼ (x′n + y′n)n.

Let (xn)n ∼ (x′n)n and λ ∈ R. Then

lim
n→∞

(λxn)an = lim
n→∞

λ(xnan) = λ lim
n→∞

xnan =

= λ lim
n→∞

x′nan = lim
n→∞

λ(x′nan)) = lim
n→∞

(λx′n)an,

and, finally, (λxn)n ∼ (λx′n)n.

To simplify the writing, we will denote in the following the elements of

the space (C(an)n) by x̂, ŷ, ....

Theorem 4. The real valued function defined on (C(an)n) by

x̂ 7→ ‖x̂‖ = lim
n→∞

|xnan|,

where (xn)n ∈ x̂, is a norm on (C(an)n). Thus, (C(an)n) becomes a normed

linear space.

Proof. First, let us show that the value of the function is independent

of the particular representative chosen in the class x̂ (the function is well-

defined). Let

(x′n)n, (x′′n)n ∈ x̂,
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hence

lim
n→∞

x′nan = lim
n→∞

x′′nan.

It results that the sequences (|x′nan|)n, (|x′′nan|)n are also convergent and

have the same limit.

We have

‖0̂‖ = lim
n→∞

|0an| = 0

and conversely, if

‖x̂‖ = 0, then lim
n→∞

|xnan| = 0,

where (xn)n ∈ x̂. Then also

lim
n→∞

xnan = 0,

therefore (xn)n ∈ 0̂, this means x̂ = 0̂.

Let α ∈ R and x̂ ∈ (C(an)n). If (xn)n ∈ x̂ then (αxn)n ∈ αx̂ and we can

write

‖αx̂‖ = lim
n→∞

|(αxn)an| = |α| lim
n→∞

|xnan| = |α|‖x̂‖.

Let x̂, ŷ ∈ (C(an)n) and (xn)n ∈ x̂, (yn)n ∈ ŷ. Obviously,

(xn + yn)n ∈ x̂ + ŷ

and, consequently,

‖x̂+ ŷ‖ = lim
n→∞

|(xn +yn)an| = lim
n→∞

|xnan +ynan| ≤ lim
n→∞

(|xnan|+ |ynan|) =

lim
n→∞

|xnan|+ lim
n→∞

|ynan| = ‖x̂‖+ ‖ŷ‖.
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