A normed spaces generated by a real sequence

Silviu Crăciunaș

Abstract

We consider a fixed real convergent sequence $(a_n)_n$ and the set of all sequences $(x_n)_n$ for which the sequence $(x_n \cdot a_n)_n$ is also convergent. This paper presents the construction of a real normed spaces defined by this sequences.

2000 Mathematical Subject Classification: 30C65

Keywords: normed spaces, real sequences

In the following we will denote by (c) the set of all convergent sequences and by (m) the set of all bounded sequences.

Let $(a_n)_n$ be a real sequence convergent to a.

Definition 1. We say that a sequnce $(x_n)_n$ is $(a_n)_n$ -convergent if the sequence $(x_n \cdot a_n)_n$ is convergent. We denote by $(c(a_n)_n)$ the set of all $(a_n)_n$ -convergent sequences.

Proposition 1 The set $(c(a_n)_n)$ verifies the properties:

- 1. $(c) \subset (c(a_n)_n)$
- 2. If $(a_n)_n \to a$ with $a \neq 0$ then $(c(a_n)_n) = (c)$.
- 3. If $(a_n)_n \to 0$ then $(m) \subset (c(a_n)_n)$.

Proof. 1. Indeed, if $(x_n)_n \in (c)$, then the sequence $(x_n \cdot a_n)_n \in (c)$.

2. Suppose that $(x_n)_n \in (c(a_n)_n)$. Then the sequence $(x_n \cdot a_n)_n$ is convergent. Because $(a_n)_n \to a$ and $a \neq 0$, there exists n_0 such that $a_n \neq 0$ for any $n > n_0$. For $n > n_0$ we have

$$x_n = (x_n \cdot a_n) \cdot \frac{1}{a_n}$$

and since the sequences

$$(\frac{1}{a_n})_{n>n_0}, (x_n \cdot a_n)_{n>n_0}$$

are convergent, it would follow that the sequence $(x_n)_{n>n_0}$ is convergent as well.

3. If $(x_n)_n \in (m)$ and $(a_n)_n \to 0$ the sequence $(x_n \cdot a_n)_n$ is obviously convergent to 0 and consequently, $(x_n)_n \in (c(a_n)_n)$.

Remark 1. If $a_n \to 0$ there are divergent sequences belonging to the set $(c(a_n)_n)$.

Indeed, if $a_n = \frac{1}{n^2}$, the sequence $(x_n)_n$ defined by $x_n = n$ belong to the set $(c(a_n)_n)$.

It results that $(c(a_n)_n)$ becomes very rich in elements when $(a_n)_n$ converges to 0. In this conditions, we will study the space $(c(a_n)_n)$ only for this

case, obtaining some properties which characterize together the convergent sequences as well as the divergent ones.

Theorem 1. The space $(c(a_n)_n)$ is a real linear space relative to the usual addition of sequences

$$(x_n)_n + (y_n)_n = (x_n + y_n)_n,$$

respectively to the multiplication with a scalar

$$\lambda(x_n)_n = (\lambda x_n)_n.$$

Proof. If $(x_n)_n, (y_n)_n \in (c(a_n)_n)$ then $((x_n + y_n)a_n)_n = (x_na_n)_n + (y_na_n)_n$ is convergent and $(x_n + y_n)_n \in (c(a_n)_n)$. Similarly, if $(x_n)_n$ is a suite from $(c(a_n)_n)$ and $\lambda \in \mathbb{R}$ then $\lambda(x_n)_n = (\lambda x_n)_n$ is convergent and $\lambda(x_n)_n \in (c(a_n)_n)$.

Theorem 2. The binary relation defined on $(c(a_n)_n)$ by $(x_n)_n \sim (y_n)_n$ if and only if

$$\lim_{n \to \infty} x_n a_n = \lim_{n \to \infty} y_n a_n$$

is an equivalence relation.

The proof is immediately.

Theorem 3. The quotient space $(c(a_n)_n)/\sim$, denoted by $(C(a_n)_n)$ is also a real linear space.

Proof. We will show that the equivalence relation \sim is compatible with the linear structure of $(c(a_n)_n)$.

Let $(x_n)_n \sim (x'_n)_n$ and $(y_n)_n \sim (y'_n)_n$. Then,

$$\lim_{n \to \infty} (x_n + y_n)a_n = \lim_{n \to \infty} (x_n a_n + y_n a_n) = \lim_{n \to \infty} x_n a_n + \lim_{n \to \infty} y_n a_n$$

and

$$\lim_{n \to \infty} (x'_n + y'_n)a_n = \lim_{n \to \infty} (x'_n a_n + y'_n a_n) = \lim_{n \to \infty} x'_n a_n + \lim_{n \to \infty} y'_n a_n.$$

But

$$\lim_{n \to \infty} x_n a_n = \lim_{n \to \infty} x'_n a_n \text{ and } \lim_{n \to \infty} y_n a_n = \lim_{n \to \infty} y'_n a_n$$

and, consequently, $(x_n + y_n)_n \sim (x'_n + y'_n)_n$.

Let $(x_n)_n \sim (x'_n)_n$ and $\lambda \in \mathbb{R}$. Then

$$\lim_{n \to \infty} (\lambda x_n) a_n = \lim_{n \to \infty} \lambda(x_n a_n) = \lambda \lim_{n \to \infty} x_n a_n =$$
$$= \lambda \lim_{n \to \infty} x'_n a_n = \lim_{n \to \infty} \lambda(x'_n a_n) = \lim_{n \to \infty} (\lambda x'_n) a_n,$$

and, finally, $(\lambda x_n)_n \sim (\lambda x'_n)_n$.

To simplify the writing, we will denote in the following the elements of the space $(C(a_n)_n)$ by \hat{x}, \hat{y}, \dots

Theorem 4. The real valued function defined on $(C(a_n)_n)$ by

$$\hat{x} \mapsto \|\hat{x}\| = \lim_{n \to \infty} |x_n a_n|,$$

where $(x_n)_n \in \hat{x}$, is a norm on $(C(a_n)_n)$. Thus, $(C(a_n)_n)$ becomes a normed linear space.

Proof. First, let us show that the value of the function is independent of the particular representative chosen in the class \hat{x} (the function is well-defined). Let

$$(x'_n)_n, \ (x''_n)_n \in \hat{x},$$

88

hence

$$\lim_{n \to \infty} x'_n a_n = \lim_{n \to \infty} x''_n a_n.$$

It results that the sequences $(|x'_n a_n|)_n$, $(|x''_n a_n|)_n$ are also convergent and have the same limit.

We have

$$\|\hat{0}\| = \lim_{n \to \infty} |0a_n| = 0$$

and conversely, if

$$\|\hat{x}\| = 0$$
, then $\lim_{n \to \infty} |x_n a_n| = 0$,

where $(x_n)_n \in \hat{x}$. Then also

$$\lim_{n \to \infty} x_n a_n = 0,$$

therefore $(x_n)_n \in \hat{0}$, this means $\hat{x} = \hat{0}$.

Let $\alpha \in \mathbb{R}$ and $\hat{x} \in (C(a_n)_n)$. If $(x_n)_n \in \hat{x}$ then $(\alpha x_n)_n \in \alpha \hat{x}$ and we can write

$$\|\alpha \hat{x}\| = \lim_{n \to \infty} |(\alpha x_n)a_n| = |\alpha| \lim_{n \to \infty} |x_n a_n| = |\alpha| \|\hat{x}\|.$$

Let $\hat{x}, \hat{y} \in (C(a_n)_n)$ and $(x_n)_n \in \hat{x}, (y_n)_n \in \hat{y}$. Obviously,

$$(x_n + y_n)_n \in \hat{x} + \hat{y}$$

and, consequently,

$$\|\hat{x} + \hat{y}\| = \lim_{n \to \infty} |(x_n + y_n)a_n| = \lim_{n \to \infty} |x_n a_n + y_n a_n| \le \lim_{n \to \infty} (|x_n a_n| + |y_n a_n|) = \lim_{n \to \infty} |x_n a_n| + \lim_{n \to \infty} |y_n a_n| = \|\hat{x}\| + \|\hat{y}\|.$$

Bibliografie

- Colojoară, I. Analiză Matematică, Editura Didactică şi Pedagogică, Bucureşti (1983).
- [2] Garnir, H.G., De Wilde M., Schmets, J., Analyse Fonctionnelle, Espaces Fonctionnels usuels, Tome III, Birkhäuser Verlag, Basel und Stuttgard (1973)
- [3] M. Nicolescu, N. Dinculeanu, S. Marcus, Analiză Matematică, vol. I, Editura Didactică şi Pedagogică, Bucureşti (1966).

"Lucian Blaga" University of Sibiu, Department of Mathematics, Str. I Rațiu, no. 5-7 550012 - Sibiu, Romania E-mail: *silviu.craciunas@ulbsibiu.ro*